

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Efficient Representation of Timed UML 2 Interactions

Knapp, Alexander; Störrle, Harald

Published in:
Proceedings of the 8th International Conference on System Analysis and Modeling

Link to article, DOI:
10.1007/978-3-319-11743-0_8

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Knapp, A., & Störrle, H. (2014). Efficient Representation of Timed UML 2 Interactions. In D. Amyot, P. Fonseca i
Casas, & G. Mussbacher (Eds.), Proceedings of the 8th International Conference on System Analysis and
Modeling: Models and Reusability (pp. 110-125). (Lecture Notes in Computer Science, Vol. 8769). DOI:
10.1007/978-3-319-11743-0_8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/24847773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-11743-0_8
http://orbit.dtu.dk/en/publications/efficient-representation-of-timed-uml-2-interactions(a0a5d0e3-4129-4ef7-b1f5-cd1c7ac2af68).html

Efficient Representation of Timed UML 2 Interactions

Alexander Knapp1 and Harald Störrle2

1 Universität Augsburg, Germany
knapp@informatik.uni-augsburg.de

2 Danmarks Tekniske Universitet, Denmark
hsto@dtu.dk

Abstract. UML 2 interactions describe system behavior over time in a declara-
tive way. The standard approach to defining their formal semantics enumerates
traces of events; other representation formats, like Büchi automata or prime event
structures, have been suggested, too. We describe another, more succinct format,
interaction structures, which is based on asymmetric event structures. It simplifies
the integration of real time, and complex operators like alt and break, and leads
to an efficient semantic representation of interactions. We provide the formalism,
and a prototypical implementation highlighting the benefits of our approach.

1 Introduction

Among the many languages defined in UML 2, interactions are among the most widely
used [2,3]. They describe system behavior over time in a declarative way, focusing on
the message exchange between instances. Thus, interactions are well-suited to specify
temporal constraints. A sample UML 2 interaction is shown in Fig. 1 below.

Type-1-Request(x)SD

Clientx Bus Server

request

reply

fail

strict

alt

request

reply

<150ms

150ms> <20 ms <40 ms

<20ms

Interaction

Lifeline

OccurrenceSpecification

Message

IntervalConstraint

Fig. 1. A first example of a UML 2 interaction. Time constraints are highlighted in red, explana-
tions of UML concepts are shown blue.

Equipped with a suitable formal semantics, UML 2 interactions can be used for rig-
orous analysis of system specifications, in particular, checking the consistency between

D. Amyot et al. (Eds.): SAM 2014, LNCS 8769, pp. 110–125, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Representation of Timed UML 2 Interactions 111

different parts of a specification. In the context of run-time verification and online check-
ing, it is particularly interesting whether a given interaction specifying a system’s be-
havior is temporally sound. More precisely, are the temporal constraints logically con-
sistent? Do they hold for a given trace? Do they hold for all traces?

Existing formal semantics for UML 2 interactions such as [14] already allow to an-
swer such questions, though only in theory: simply compute the set of all traces and
check for emptiness of the set (logical consistency) or inclusion of the target trace. So,
clearly, we can decide the above consistency questions for all finite traces in principle.
However, due to the existence of interaction operators like par, the number of traces is
exponential in the size of the interaction, so we would have to enumerate a very large
set of traces before we can answer the questions raised above. Clearly, this approach is
of little practical value.

Unfortunately, all existing semantics that include real time and the interaction oper-
ators (which distinguish UML 2 from UML 1 interactions) suffer from this limitation
(or use an exponentially sized semantic representation of the interaction to begin with).
In contrast, the approach presented in this paper introduces a novel semantic representa-
tion that represents the set of all traces of an interaction in a format that grows linearly
in the size of the underlying interaction. It allows to check whether a concrete run
complies with an interaction and its temporal constraints, and it can be implemented
efficiently, with very modest effort. This is reminiscent of the way binary decision dia-
grams (BDDs) improved model checking of propositional logic formulas.

Synopsis. After discussing related work in Sect. 2, we summarize the sub-language of
UML 2 interactions that we consider in Sect. 3. Our format of symbolic representations
of these interactions is introduced in Sect. 4, where we also discuss the resulting traces
and the translation of UML 2 interactions into a symbolic representation. In Sect. 5, we
give an overview of our prototypical implementation and its performance. We conclude
and discuss future work in Sect. 6.

2 Related Work

A comprehensive survey of UML 2 interaction semantics is found in [9]. Among other
things, the transition from UML 1 to UML 2 introduced a novel semantics for inter-
actions, which is why the first investigations of UML 2 interactions [14,13] focused
on understanding and interpreting the standard document. Since the UML specification
informally suggests that the meaning of interactions are sets of sequences of so-called
“interaction occurrences”, this is what the first semantics defined formally.

While this point of view was well-suited to understand and formalize the prose speci-
fication of UML 2, it is less-well suited for the analysis of interactions and their possible
traces, since interactions give rise to an exponential number of traces. The same prob-
lem is encountered by approaches using an automata-based representation (e.g., [7]),
as they need to encode traces in states, which again leads to an exponential number
of states. The declarative representation we propose in this paper, on the other hand,
encodes UML 2 interaction as sets of constraints whose size is linear in the size of
the interaction. Furthermore, it allows to include real-time annotations seamlessly. It

112 A. Knapp and H. Störrle

is suitable for checking whether a given trace of time-stamped events is a valid trace
according to the interaction without having to compute all its possible traces.

An approach similar to ours has first been pursued by Küster-Filipe [8]. While Küster-
Filipe employed prime event structures, we propose to use a format inspired by asym-
metric event structures [1], which yields a more compact symbolic representation by
avoiding duplications that are required when using prime event structures. At the same
time, asymmetric event structures also allow us to integrate UML 2’s break operator for
breaking scenarios, an important practical scenario not covered by Küster-Filipe.

There is a rich body of work on timed Message Sequence Diagrams and timed
UML 1 interactions, but there are only three approaches to study timed UML 2 interac-
tions according to [9]. None of these has been implemented; in contrast, we do present
a prototypical implementation for checking the conformance of timed traces w.r.t. an
interaction, and discuss its performance.

There have also been other approaches that focus on different aspects of interactions.
For model checking against the automaton-based specification format of UML 2 state
machines, a representation of an interaction as an additional observer Büchi automaton
is a closer fit [7]; also, the relation of interactions to safety and liveness properties
can be expressed when using Büchi automata [4]. For testing, a representation as a
structured composite graph makes the decision structure more transparent, which can
be used to derive test data [10]. For studying the concurrency inherent in an interaction,
the use of (prime) event structures, a denotational framework for true concurrency, [8]
or lattices [5] turned out to be fruitful.

3 UML 2 Interactions

The main building block is the basic interaction, which represents orderings of so-called
“occurrence specifications” directly, as a partial order. An occurrence specification cap-
tures that an event (like the sending or receiving of a message) happens on an instance
partaking in the interaction; the ordering relations define the sequences in which these
events may happen. Basic interactions form an “interaction fragment” that may be com-
bined by the “interaction operators” strict (strict sequential composition), seq (lifeline-
wise sequential composition), par (parallel composition), alt (alternative composition),
break (aborting composition), and ref (including a named interaction). Additionally, all
fragments may be equipped with timing constraints. For later reuse by ref, interaction
fragments can be given a name.

We assume three primitive, finite domains for instances I, messages M, and inter-
action names N . We always assume that all identifiers of occurrence specifications are
globally unique. An occurrence specification is of the form o : τ , where o is the iden-
tifier of the occurrence specification and τ is its type. The type of an occurrence speci-
fication is of one of the forms SND(s , r ,m) or RCV(s , r ,m), representing the dispatch
and the arrival of message m from sender instance s to receiver instance r , respectively.
The set O comprises all occurrence specifications over I and M. For an o : τ ∈ O, we
write τ(o) for τ .

A basic interaction B is given by a directed acyclic graph (O ,→) with O �= ∅ and
O ⊆ O a finite, non-empty set of occurrence specifications such that the identifiers of

Efficient Representation of Timed UML 2 Interactions 113

the occurrence specifications in O are all different, and → ⊆ O × O such that the
reflexive-transitive closure of → on O forms a partial order. The abstract syntax of our
fragment of UML 2 interactions is given by the grammar in Fig. 2.

TimingConstraint � Γ ::= o2 − o1 �� d | � �� d
| true | Γ1 ∧ Γ2 | Γ1 ∨ Γ2

Interaction � I ::= sd(name,T)

InteractionFragment � T ::= B | CF | tmconstr(T , Γ)

CombinedFragment � CF ::= strict(T1,T2) | seq(T1,T2) | par(T1,T2)
| alt(T1,T2) | break(T1,T2) | ref(name)

Fig. 2. Abstract syntax of timed interactions: o1, o2 ∈ O, �� ∈ {<,≤,≥, >}, and d ∈ Q≥0; B
ranges over the basic interactions, name over the interaction names N

For expressing timing constraints, we use clauses of the form Γ specified in Fig. 2.
Intuitively, a timing constraint o2 − o1 �� d means that the difference in time between
any occurrence of an event conforming to o2 and any event conforming to o1 is bounded
by d w.r.t. to the relation ��. A timing constraint � �� d means that the duration of the
interaction fragment to which this timing constraint is attached is bounded by d w.r.t.
to ��. Furthermore, true represents the timing constraint that is always true, and Γ1 ∧
Γ2 and Γ1 ∨ Γ2 respectively mean the conjunctive and disjunctive combination of the
timing constraints Γ1 and Γ2. Though we have restricted ourselves to binary relations
over occurrence specifications, this language can be extended easily for correlating an
arbitrary number of occurrence specifications.

Example 1. Consider the following UML 2 interaction diagram:

A B

ring

rang

bang

a

c

e

b

d

f

≥ 2

≤ 4

seq

sd ex

In the abstract syntax, this is represented by sd(ex, tmconstr(seq(tmconstr(B1,T1),
B2),T2)) with basic interaction B1 and B2, and timing constraints T1 and T2 given by

B1 = ({ a : SND(A,B, ring), b : RCV(A,B, ring),

c : SND(A,B, rang), d : RCV(A,B, rang)},
{ a → b , c → d , a → c , b → d }) ,

B2 = ({ e : SND(A,B, bang), f : RCV(A,B, bang)}, { e → f }) ,

T1 = d − b ≥ 2 ,

T2 = d − b ≤ 4 .

114 A. Knapp and H. Störrle

The language of interactions can be extended by introducing syntactical abbrevia-
tions like, e.g., a finite upper-bounded loop(k ,T) setting

loop(1,T) ≡ T

loop(k + 1,T) ≡ alt(T , seq(Tρ1, loop(k ,Tρ2)))

where the renamings ρ1 with ρ1(o) = seq.o and ρ2 with ρ2(o) = loop.o, written in
postfix notation, introduce consistently new names for the occurrence specifications of
T .

4 Symbolic Representation of UML 2 Interactions

According to the UML 2 standard, (timed) UML 2 interactions describe “emergent
behavior” [12], i.e., UML 2 interactions can be considered to specify which traces of
events are allowed (or disallowed) to be observed from an implemented system. The
occurrence specifications of a UML 2 interaction express the possible events. On the
one hand, the orderings of these occurrence specifications, be they directly given by
a basic interaction, or be they expressed by the interaction operators strict, seq, or par,
restrict the possible sequences of events. On the other hand, compositions of interaction
fragments via alt and break specify choices between different sequences. Usages of ref
merely correspond to macro expansions. Finally, the timing constraints restrict timing
distances between events for the occurrence specifications.

Formally, a (timed) event e = 〈τ, t〉 consists of two parts: the type τ of an occurrence
specification, saying whether it is a sending or receiving event, for which message, and
between which instances; and the time point t ∈ R≥0 at which it occurs. We write τ(e)
for τ , and t(e) for t . We say that an event e conforms to an occurrence specification o,
if τ(e) = τ(o). A sequence of events e1 e2 . . . ek is a trace if t(e1) ≤ t(e2) ≤ . . . ≤
t(ek).

We now want to capture the prescriptions mandated by a UML 2 interaction in a sym-
bolic format that succinctly expresses the requirements on what the allowed traces of
(timed) events are. We call this format an interaction structure of a UML 2 interaction.
Such an interaction structure (O ,R,X , Θ) consists of the following components:

– a finite set of occurrence specifications O ; it specifies all the occurrence specifica-
tions for which events are allowed to be observed: in a trace e1 . . . ek , all events
ei have to conform to one of the occurrence specifications in O . However, there
may be several choices for conformance and we have to provide an injective map
λ : {e1, . . . , ek} → O with τ(e) = τ(λ(e)) for all e ∈ {e1, . . . , ek} in order to fix
which event represents which occurrence specification.

– a binary relation R ⊆ O × O specifying a causality relation over O , i.e., a partial
ordering on O . This relation says in which order the events conforming to O are
allowed to occur, if they occur at all: if for a trace e1 . . . ek the events ei and ej with
i ≤ j shall represent the occurrence specifications oi and oj in O , then it must not
be the case that oj �R oi in the partial order �R generated by R.

– a binary relation X ⊆ O ×O specifying an R-compatible inhibition relation over O ,
i.e., an irreflexive relation �(R,X) ⊆ O ×O with o2�(R,X) o3 iff there is an o1 ∈ O

Efficient Representation of Timed UML 2 Interactions 115

with o1 �R o2 and (o1, o3) ∈ X . This relation expresses which events inhibit others:
if o1�(R,X)o2, then an event e representing the occurrence specification o1 excludes
events conforming to o2 from occurring after e in a trace.

– a timing constraint Θ, which is a conjunctive or disjunctive combination of timing
constraints of the form true or o2 − o1 �� d ; it says which timing conditions the
time-stamps of events have to obey (where duration constraints of the form � �� d
are reduced to combinations of occurrence constraints).

For the traces of an interaction structure (O ,R,X , Θ), we require that before each
event on the trace a maximal, consistent set of events w.r.t. to R, X , and Θ occurs: All
the causes of the event w.r.t. the causality relation �R which are not present on the trace
have to be excluded by the inhibition relation �(R,X), and all timing constraints from
Θ have to be satisfied for the chosen events; see Sect. 4.1.

Example 2. Consider the following UML 2 interaction diagram:

A B

ring

bang

a

c

b

d

≤ 1
alt

The traces of events allowed by this interaction are of one of the following two forms:

〈SND(A,B, ring), t1〉 〈RCV(A,B, ring), t2〉, t1, t2 ∈ R≥0, t2 − t1 ≤ 1 ;

〈SND(A,B, bang), t3〉 〈RCV(A,B, bang), t4〉, t3, t4 ∈ R≥0 .

The requirements on the occurrence specifications themselves are: a is ordered before
b , and c before d ; either the upper operand can be observed, i.e., a and b occur,

or the lower operand can be observed, i.e., c and d occur; at most a single time unit
elapses between a and b . We can express these requirements by the following interac-
tion structure:

O = { a , b , c , d } ,

R = { a → b , c → d } ,

X = { a � c , a � d , b � c , b � d ,

c � a , d � a , c � b , d � b } ,

Θ = b − a ≤ 1 ,

where we write o � o′ for a pair (o, o′) ∈ X . Relation R requires that a only may
be observed before b , and that c may only be observed before d . The interpretation
of X is that an observation of a or b must not be followed by an observation of c

or d in the future, and, symmetrically, that the observation of c or d must not be
followed by an observation of a or b in the future. In combination, R and X say that

116 A. Knapp and H. Störrle

an observation of b not only cannot be followed by an observation of c or d but must
be preceded by an observation of a , since a → b , and not a � b .

Thus the following non-empty sequences of occurrence specifications conform to
both the ordering constraints R and the inhibition constraints X :

a , a b , c , c d .

Generally, we would require that either the upper or the lower operand are observed
completely, which then only leaves a b and c d .

For taking into account the timing constraints, we look for all traces of events for
which we can find a bijective labeling from the set of events in the trace to a sequence of
occurrence specifications conforming to the interaction structure such that the concrete
time-stamps of the events satisfy the conditions of the timing constraints. For a b this
results in

〈SND(A,B, ring), t1〉 〈RCV(A,B, ring), t2〉, t1, t2 ∈ R≥0, t2 − t1 ≤ 1

using the labeling λ(〈SND(A,B, ring), t1〉) = a (both the event and the occurrence
specification have the same type), and λ(〈RCV(A,B, ring), t2〉) = b . Similarly, c d

yields

〈SND(A,B, bang), t3〉 〈RCV(A,B, bang), t4〉, t1, t2 ∈ R≥0

using the labeling λ(〈SND(A,B, bang), t3〉) = c and λ(〈RCV(A,B, bang), t4〉) = d ;
here the timing constraint Θ = b − a ≤ 1 is satisfied, since the labeling does not
mention a and b .

For an interaction structure S = (O ,R,X , Γ), we write O(S), R(S), X (S), and
Γ (S) for O , R, X , and Γ , respectively.

The format of interaction structures is inspired by the notion of prime event struc-
tures (E ,≤,
), where E is a set of events, ≤ ⊆ E × E is a partial order describ-
ing the causal relationship of events, and
 is an irreflexive, symmetric binary relation

 ⊆ E × E , specifying which events are in conflict with each other [11]. In a configu-
ration C ⊆ E of the prime event structure, all causes of each event have to be present
and any two events must not be in conflict.

Küster-Filipe [8] has suggested to capture a UML 2 interaction as a prime event struc-
ture, where its (partial) executions correspond to the configurations of the prime event
structure. However, when expressing alt by the symmetric conflict relation of a prime
event structure, it is necessary to duplicate all future events: Consider strict(alt(a , b),
T), where a and b represent basic interactions of a single occurrence specification;
here, a and b are in conflict. If all occurrence specifications of the interaction frag-
ment T get a and b as their causes, no configuration containing a or b could also
contain any occurrence specification from T , since then also all the causes of this oc-
currence specification, which are both a and b , would have to be present, which is
impossible. Thus, the occurrence specifications of T are duplicated and one copy gets
only a as its cause, the other copy b .

Efficient Representation of Timed UML 2 Interactions 117

We circumvent this duplication process by using the notion of asymmetric conflicts
taken from asymmetric event structures [1]. There, conflicts are expressed by weak
causes saying that if an event e is a weak cause for another event e ′ and both events e
and e ′ occur in a configuration then e has to precede e ′; in fact, if e ′ also would be a
weak cause for e, then e and e ′ could not occur simultaneously in one configuration. In
our approach, we rely exclusively on such weak causes, i.e., both R and X of an inter-
action structure (O ,R,X , Θ) are interpreted in this way. This makes the presentation
more uniform, though at the expense of requiring that all possible weak causes of an
occurrence specification have to be present in a trace.

4.1 Traces of an Interaction Structure

For an interaction structure (O ,R,X , Θ), we now define its traces of events following
the recipe of the last example. We proceed in two steps: First, we define all sequences
of occurrence specifications (not events) that are allowed by the interaction structure.
Then we take the timing constraints into account and define the traces of (O ,R,X , Θ).

For the first step, let o1 . . . ok be a sequence of different occurrence specifications
with {o1, . . . , ok} ⊆ O . Let �R be the partial order relation generated by R through
taking the reflexive, transitive closure of R on O , and let �(R,X) be the inhibition
relation generated from R and X by taking the upwards closure of X w.r.t. �R. We say
that o1 . . . ok conforms to the ordering constraints R and the inhibition constraints X
if for all 1 ≤ j ≤ k the occurrence specification oj is a minimal element of the partial
order (Oj ,�R ∩ (Oj ×Oj)) with

Oj = O \ ({o1, . . . , oj−1} ∪ {o ∈ O | ∃1 ≤ i ≤ j − 1 . oi �(R,X) o}) .

The sequence of occurrence specifications o1 . . . ok is allowed by (O ,R,X , Θ) if
it conforms to R and X and is maximal w.r.t. conformance, i.e., there is no o ∈ O \
{o1, . . . , ok} such that also o1 . . . ok o conforms to R and X .

Example 3. Consider the following interaction structure (O ,R,X , true) (where we
omit the occurrence specification types):

O = { a , b , c , d } ,

R = { a → b , c → d } ,

X = { c � a , c � b , d � a , d � b } .

Here, every sequence of occurrence specifications allowed by (O ,R,X , Θ) must not
show a or b after c or d . On the other hand, b c is not allowed, since a → b , i.e.,
b is not a minimal element of �R. By the maximality condition, the allowed sequences

of occurrence specifications are:

c d , a c d , a b c d .

For the second step, taking the timing constraints Θ into account, let e1 . . . ek
be a trace of events. We say that e1 . . . ek conforms to a sequence of occurrence
specifications o1 . . . ol allowed by (O ,R,X , Θ) via a function λ : {e1, . . . , ek} →

118 A. Knapp and H. Störrle

{o1, . . . , ol} if λ is bijective and τ(e) = τ(λ(e)) for all e ∈ {e1, . . . , en}; we call
such a function a labeling. Now, let e1 . . . ek conform to o1 . . . ol via the labeling λ.
The trace of events e1 . . . ek satisfies a time constraint o′

2 − o′
1 �� d w.r.t. λ if either

{λ(e) | e ∈ {e1, . . . , ek}} �= {o′
1, o

′
2}, i.e., at least one of the occurrence specifica-

tions mentioned by the timing constraint is not covered by the trace of events; or if
t(λ−1(o′

2))− t(λ−1(o′
1)) �� d , i.e., the time difference between the events representing

o′
2 and o′

1, respectively, is bounded by d w.r.t. �� (with its usual meaning on the real
numbers). The trace satisfies a time constraint Θ1 ∧ Θ2 w.r.t. λ if it satisfies both Θ1

and Θ2 w.r.t. λ; and it satisfies a time constraint Θ1 ∨Θ2 w.r.t. λ if it satisfies Θ1 or Θ2

w.r.t. λ.
Summing up, a trace of events e1 . . . ek satisfies the interaction structure (O ,R,X ,

Θ) if there is a sequence of occurrence specifications o1 . . . ol allowed by (O ,R,X , Θ)
such that e1 . . . ek conforms to o1 . . . ol via a labeling λ : {e1, . . . , ek} → {o1, . . . , ol}
and e1 . . . ek satisfies Θ w.r.t. λ.

Example 4. Consider the interaction structure of the previous example where now the
occurrence specification types are

a : SND(A,B, ring) , b : RCV(A,B, ring) ,

c : SND(A,B, ring) , d : RCV(A,B, ring) ;

and where we replace the timing constraint true by b − a ≤ 1. Then the trace
of events 〈SND(A,B, ring), 0.2〉 〈RCV(A,B, ring), 1.3〉 satisfies this interaction struc-
ture, since it conforms to the sequence of occurrence specification c d via the la-
beling λ(〈SND(A,B, ring), 0.2〉) = c and λ(〈RCV(A,B, ring), 0.2〉) = d ; it satis-
fies the timing constraint b − a ≤ 1 trivially, since neither a nor b are part of
c d . Also, the longer trace 〈SND(A,B, ring), 0.2〉 〈RCV(A,B, ring), 0.9〉 〈SND(A,B,
ring), 1.1〉 〈RCV(A,B, ring), 2.4〉 conforms to the sequence of occurrence specifica-
tions a b c d and satisfies the timing constraint b − a ≤ 1.

4.2 Deriving an Interaction Structure

We now define a function S�−�Σ that yields an interaction structure (O ,R,X , Θ) for
an interaction fragment given a context Σ = {sd(name1,T

′
1), . . . , sd(namek ,T

′
k)} of

interactions, where the names namei are pairwise different. In the definition, we pro-
ceed recursively by the structure of our abstract syntax of UML 2 interaction fragments,
where we always assume that the identifiers of occurrence specifications are globally
unique. We write Min(O ,�) and Max(O ,�) for the set of minimal and maximal ele-
ments of a partial order (O ,�).

Basic Interactions. For a basic interaction B = (O ,→), the occurrence specifications
O make up the occurrence specifications component of the resulting interaction struc-
ture, and the ordering relation → ⊆ O ×O yields the ordering constraints:

S�(O ,→)�Σ = (O ,→, ∅, true) .

Note that for any interaction structure, we only need to record the skeleton of the partial
ordering resulting from the order component which, in general, may reduce the number
of pairs to be stored considerably.

Efficient Representation of Timed UML 2 Interactions 119

Combined Fragments. We give the definitions for strict, seq, par, alt, break, and ref,
abbreviating S�Ti �Σ by (Oi ,Ri ,Xi , Θi):

A strict composition strict(T1,T2) of two timed fragments T1 and T2 requires that
T1 has to have completely finished before T2 starts. For S�strict(T1,T2)�Σ we there-
fore not only take the union (resp. conjunction) of all the components of the interaction
structures for T1 and T2, but also add the constraint that any occurrence specification
from S�T1�Σ has to occur before any occurrence specification from S�T2�Σ:

S�strict(T1,T2)�Σ = (O1 ∪O2,

R1 ∪ R2 ∪ {o1 → o2 | o1 ∈ O1, o2 ∈ O2},
X1 ∪ X2, Θ1 ∧Θ2) .

Example 5. Consider the following UML 2 interaction diagram:

A B

ring

bang

a

c

b

d

strict

The two inner fragments have the interaction structure

({ a : SND(A,B, ring), b : RCV(A,B, ring)}, { a → b }, ∅, true) ,

({ c : SND(A,B, bang), d : RCV(A,B, bang)}, { c → d }, ∅, true) .

Combining these strictly adds a → c , a → d , b → c , and b → d , thus the
interaction structure is

({ a , b , c , d },
{ a → b , a → c , a → d , b → c , b → d , c → d }, ∅, true) ,

where we have omitted the types of the occurrence specifications; taking the skeleton
of the partial order specified in the order component, this can be expressed equivalently
by

({ a , b , c , d }, { a → b , b → c , c → d }, ∅, true) .

A weak sequential composition seq(T1,T2) of two timed fragments T1 and T2 only
requires that T1 has to have finished before T2 lifeline-wise, i.e., all occurrence speci-
fications of T1 on some lifeline have to happen before all occurrence specifications of
T2 on the same lifeline. Let us write o1 <> o2 when o1 and o2 are active for the same
lifeline where a SND(s , r ,m) is active for the sender s , and a RCV(s , r ,m) is active for
the receiver r :

S�seq(T1,T2)�Σ = (O1 ∪O2,

R1 ∪R2 ∪ {o1 → o2 | o1 ∈ O1, o2 ∈ O2, o1 <> o2},
X1 ∪X2, Θ1 ∧Θ2) .

120 A. Knapp and H. Störrle

Example 6. Consider the UML 2 interaction diagram of the previous example but with
strict replaced by seq. The two inner fragments have the same interaction structure as
before, but the ordering constraints added now are only a → c and b → d .

A parallel fragment par(T1,T2) allows for an arbitrary interleaving of the occurrence
specifications in T1 and T2, as long as the constraints for T1 and T2 are satisfied sepa-
rately; therefore we take the union resp. conjunction of all components of the respective
interaction structures:

S�par(T1,T2)�Σ = (O1 ∪O2,R1 ∪R2,X1 ∪X2, Θ1 ∧Θ2) .

An alternative fragment alt(T1,T2) represents a choice of either T1 or T2. Here,
we express the two possibilities by making the occurrence specifications of T1 and T2

mutually exclusive:

S�alt(T1,T2)�Σ = (O1 ∪O2,R1 ∪ R2,

X1 ∪ X2 ∪ {o1 � o2 | o1 ∈ O1, o2 ∈ O2} ∪
{o2 � o1 | o1 ∈ O1, o2 ∈ O2},

Θ1 ∧Θ2) .

An example for alt has been given in Ex. 2. However, the representation of the inhibition
constraints X = { a � c , a � d , b � c , b � d , c � a , d � a , c �
b , d � b } given there can be reduced to { a � c , a � d , c � a , d � a }

using the ordering constraints R = { a → b , c → d }.
A break fragment break(T1,T2) says that T1 may be aborted at any time during

its execution, and T2 is performed on abortion. (Note that the UML 2 specification in-
troduces break as a unary interaction operator showing only one interaction fragment
as operand; it aborts its enclosing interaction fragment. We prefer to make break bi-
nary in order to clarify the two operands.) The translation of break is thus similar to the
translation of alt; however, we only require that after T2 has started, no occurrence spec-
ification of T1 is allowed any more, and if T1 has finished, no occurrence specification
from T2 is allowed:

S�break(T1,T2)�Σ = (O1 ∪O2,R1 ∪ R2,

X1 ∪ X2 ∪ {o2 � o1 | o1 ∈ O1, o2 ∈ O2} ∪
{o1 � o2 | o1 ∈ Max(O1,�R1), o2 ∈ O2},

Θ1 ∧Θ2) .

Example 7. Consider the following UML 2 interaction diagram:

A B

ring

bang

a

c

b

d

break

Efficient Representation of Timed UML 2 Interactions 121

The resulting inhibition constraints are { c � a , c � b , d � a , d � b , b �
c , b � d }. This is similar to Ex. 3, but { b � c , b � d } is added. The resulting

allowed sequences of occurrence specifications are a b , a c d , and c d .

Finally, a reference fragment ref(name) amounts to yielding the interaction structure
of the interaction fragment T from sd(name,T) ∈ Σ; in order keep all identifiers of
occurrence specifications unique, we use a renaming ρ with ρ(o) = name.o (where
name.o is assumed to be fresh), which we write in postfix notation:

S�ref(name)�Σ = (Oρ,Rρ,X ρ,Θρ) if sd(name,T) ∈ Σ and

S�T �Σ = (O ,R,X , Θ) .

Timing Constraints. For a timed fragment tmconstr(T , Γ), we first reduce each duration
constraint � �� d in Γ to an expanded form resulting in a timing constraint Θ, character-
izing the duration of the interaction fragmentT in terms of its occurrence specifications.
Then we add this expanded Θ conjunctively to the timing constraints of the interaction
structure S�T �Σ:

S�tmconstr(T , Γ)�Σ = (O(S�T �Σ),R(S�T �Σ),X (S�T �Σ), Θ(S�T �Σ)∧Θ) .

The expansion of an � �� d uses the partial order (O ,�) = (O(S�T �Σ),�R(S�T�Σ))
and has to distinguish between the two cases whether �� ∈ {<,≤} and �� ∈ {≥, >}.
In the case of an upper bound where �� ∈ {<,≤}, the expansion is the conjunction
of upper bounds between the minimal and the maximal occurrence specifications of T ;
i.e., all occurrence specifications must happen within time bound d :

∧{o2 − o1 �� d | o2 ∈ Max(O ,�), o1 ∈ Min(O ,�)} .

In the case of a lower bound where �� ∈ {≥, >}, the expansion is the disjunction of
lower bound between the minimal and the maximal occurrence specifications of T ; i.e.,
the difference in time between some occurrence specifications must be at least d :

∨{o2 − o1 �� d | o2 ∈ Max(O ,�), o1 ∈ Min(O ,�)} .

Example 8. Consider the following UML 2 interaction diagram:

A B

ring

bang

a

c

b

d

par

� ≥ 2

The duration of the par-fragment shall be at least 2. The minimal elements of the overall
interaction structure are { a , c }, the maximal elements { b , d }. The expansion of
� ≥ 2 therefore is

(b − a ≥ 2) ∨ (b − c ≥ 2) ∨ (d − a ≥ 2) ∨ (d − c ≥ 2) .

122 A. Knapp and H. Störrle

5 Validation

We validate our approach by a prototypical implementation with a large number of test
cases, and an extended example, where we check whether given traces comply with an
interaction without computing all the traces of the interaction first. The transformation
of interactions into interaction structures is straightforward and directly follows the defi-
nitions given in Sect. 4 above. Algorithm 1 shows how trace prefixes of arbitrary length
can be checked for conformance against a given interaction structure. The successor
function simply takes an ordering or time constraint and extracts the event occurrence
with a higher time-stamp. The choose-operation is necessary since it is possible that con-
current fragments start with event occurrences with the same signature, as our example
shows. In this situation, all alternative paths have to be explored; using Prolog’s built
in backtracking features allows straightforward handling of this situation. While one
can construct abnormal cases where this is indeed occurring, leading to deterioration of
performance, it may be argued that this is a modeling mistake, so that most practical
scenarios will not suffer from this drawback. Without it, the computational effort of this
algorithm is linear in the size of the interaction and the trace.

Algorithm 1. Check whether a trace conforms to an interaction structure
Input: an interaction structure IS and a trace of events e1 . . . ek
for i = 1..k do

// Compute unconstrained (i.e., enabled) occurrence specifications
Ui ← O(IS);
for c ∈ R(IS) ∪ constraints(Θ(IS)) do

Ui ← Ui \ successor(c);
// Choose enabled, conforming occurrence specification, if possible
Oi ← {o ∈ Ui | ei conforms to o};
if Oi = ∅ then

abort “trace does not conform”;
else

oi ← choose Oi ;

// Propagate choice removing irrelevant occurrence specifications and constraints
Xi ← conflicting(oi ,X);
IS ← remove occurrence specifications {oi} ∪ Xi from IS ;
IS ← remove constraints related to {oi} ∪Xi from IS ;
IS ← simplify Θ(IS) with time-stamp t(ei) for oi ;

// Check all timing constraints
evaluate Θ(IS);

We have also implemented the symbolic representation and the above algorithm to
demonstrate its feasibility. We used SWI-Prolog [15] for this purpose to be able to align
the implementation closely with the definitions of this paper. The implementation con-
sists of 5 modules with less than 800 lines of code/1000 clauses, plus a few generic aux-
iliary libraries. The implementation allows to check interactions for well-formedness,

Efficient Representation of Timed UML 2 Interactions 123

transform them into timed event structures, expand them to trace sets, and, of course,
check traces against interaction structures. Another set of modules (approx. 300 lines of
code) defines approx. 100 test cases and run-time measurement scaffold. We have used
this implementation to analyze the sample interaction shown in Fig. 1 and Fig. 3. We
have defined ten examples and counter-examples of valid traces manually, and checked
them for compliance against the interaction, validating that our implementation does
indeed truthfully implement our approach. The smallest of these samples for Client(1)-
Server is shown in Fig. 3 (bottom, left).

In order to validate the scalability of our approach, we created a loop wrapping a
simple elementary interaction (see Fig. 4, top), and checked it against traces of increas-
ing length. In Fig. 4, bottom, we show the length of traces as the x-axis (corresponds to
the number of occurrence specifications in the interaction structure), the number of con-
straints arising from it (y-axis, grey bar chart/graph), and the time used for converting
an interaction to an interaction structure (y-axis, red graph). The time to check a trace
against an interaction structure was too small to be measured. All measurements are the
average of ten runs, to cancel out delays due to garbage collection and similar issues.
All measurements were taken on an outdated sub-notebook computer (Intel Core Duo,
1.2GHz, 2GB RAM).

Client(x)-ServerSystem SDSD

Clientx Bus Server

seq

ok

register

accept

ref Type-1-Request

par

loop

ref Client(1)-Server

par

ref Client(2)-Server

register

accept
<snd(Client1, Bus, register), 0.000>
<rcv(Client1, Bus, register), 0.002>
<snd(Bus, Client1, ok), 0.013>
<rcv(Bus, Client1, ok), 0.015>
<snd(Bus, Server, register), 0.019>
<rcv(Bus, Server, register), 0.023>
<snd(Server, Bus, accept), 0.029>
<rcv(Server, Bus, accept), 0.033>
<snd(Bus, Client1, accept), 0.054>
<rcv(Bus, Client1, accept), 0.056>
<snd(Client1, Bus, request), 0.081>
<rcv(Client1, Bus, request), 0.083>
<snd(Bus, Server, request), 0.087>
<rcv(Bus, Server, request), 0.090>
<snd(Server, Bus, reply), 0.103>
<rcv(Server, Bus, reply), 0.107>
<snd(Bus, Client1, reply), 0.112>
<rcv(Bus, Client1, reply), 0.115>

Fig. 3. An extended example for validating our approach and implementation. Observe, that the
interaction shown in Fig. 1 is re-used.

The measurements clearly show that, with increasing length of loop unrolling and
trace length, the number of constraints increases linearly, while the conversion times
increase polynomially. Recall, that this translation occurs only once, at model com-
pile time; afterwards, all checks are executed in constant time. Even when including the

124 A. Knapp and H. Störrle

236

796

1596

2396

1.28
33.3

248.4

794.9

0

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

2500

3000

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

20

40

60

80

100

120

140

160

180

4 8 16 32 48 64 80

Number of Constraints Duration of Conversion [s]x-axis: Trace Length

register
ok

loop(k)

client bus

a b

cd

 : snd(client, bus, register)
 : rcv(client, bus, register)
 : snd(bus, client, ok)
 : rcv(bus, client, ok)

Traces
k=1: a1.b1.c1.d1
k=2: a1.b1.c1.d1.a2.b2.c2.d2
k=3: a1.b1.c1.d1.a2.b2.c2.d2.a3.b3.c3.d3
. . .

[s]
[s]

constraints constraints

[events][events]

a
b
c
d

Fig. 4. Measuring the scalability of the implementation: transforming interactions into interac-
tion structures takes linear space and polynomial time. “Constraints” include ordering, timing
constraints, and conflicts.

translation time, a naive implementation on weak hardware results in acceptable run-
times: checking a (timed) trace against an interaction takes less than a second for traces
of up to 100 events, and about half a minute for traces of around 500 events.

6 Conclusions and Future Work

With interaction structures, we have presented a compact and versatile format for repre-
senting the positive trace sets of a UML 2 interaction. Based on asymmetric event struc-
tures, interaction structures provide flexible means for specifying alternative scenarios.
The format is declarative rather than operational; it relies on constraints for expressing
orderings and exclusions and includes timing constraints for expressing real-time re-
quirements in interactions. We have also described a prototypical implementation for
translating a UML 2 interaction into an interaction structure and checking the confor-
mance of a trace with the interaction structure.

The approach presented in this paper is the first to cover time for UML 2 interac-
tions in an efficient way, including the major interaction operators. This is essential for
practical tool support, which we demonstrate with a proof-of-concept implementation.
Previous approaches either suffered from exponential blow-up of the representations, or
considered only a much smaller language fragment.

Efficient Representation of Timed UML 2 Interactions 125

One of the open issues is the inclusion of interaction fragments with empty traces,
like opt. This would require a small extension of the notion of interaction structures
with “virtual” occurrence specifications that indicate the beginning and ending of an
interaction fragment and which can be interpreted as “silent actions” [8], though we
would like to minimize their number. A proper integration of the notorious negative
behavior specification operators neg and assert is more challenging, where, e.g., modal
sequence diagrams may be an interesting approach [6]. We would also like to investigate
the use of our algorithm for checking the conformance of a trace to an interaction for
run-time verification.

References

1. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, Asymmetric Event Struc-
tures, and Processes. Inf. Comput. 171(1), 1–49 (2001)

2. Dobing, B., Parsons, J.: How UML Is Used. Comm. ACM 49(5), 109–113 (2006)
3. Dobing, B., Parsons, J.: Dimensions of UML Diagram Use: Practitioner Survey and Research

Agenda. In: Siau, K., Erickson, J. (eds.) Principle Advancements in Database Management
Technologies: New Applications and Frameworks, pp. 271–290. IGI Publishing (2010)

4. Grosu, R., Smolka, S.A.: Safety-Liveness Semantics for UML 2.0 Sequence Diagrams. In:
Proc. 5th Conf. Appl. of Concurrency to System Design (ACSD 2005), pp. 6–14. IEEE Com-
puter Society (2005)

5. Hammal, Y.: Branching Time Semantics for UML 2.0 Sequence Diagrams. In: Najm, E.,
Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 259–274.
Springer, Heidelberg (2006)

6. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Sequence
Diagrams. J. Softw. Syst. Model. 7(2), 237–252 (2008)

7. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T. (ed.) MoD-
ELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

8. Küster-Filipe, J.: Modelling Concurrent Interactions. Theo. Comp. Sci. 351(2), 203–220
(2006)

9. Micskei, Z., Waeselynck, H.: The Many Meanings of UML 2 Sequence Diagrams: A Survey.
J. Softw. Syst. Model. 10(4), 489–514 (2011)

10. Nayak, A., Samanta, D.: Automatic Test Data Synthesis using UML Sequence Diagrams. J.
Obj. Techn. 9(2), 75–104 (2010),
http://www.jot.fm/issues/issue201003/article2/

11. Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains, Part I. Theo.
Comp. Sci. 13, 85–108 (1981)

12. Object Management Group: OMG Unified Modeling Language (OMG UML), Superstruc-
ture. Version 2.4.1. OMG Document Number: formal/2011-08-06. Tech. rep., Object Man-
agement Group (August 2011), http://www.omg.org/spec/UML/2.4.1/

13. Störrle, H.: Assert, Negate and Refinement in UML-2 Interactions. In: Jürjens, J., Rumpe,
B., France, R., Fernandey, E.B. (eds.) Proc. Ws. Critical Systems Development with UML.
Technical report TUM-I0317. pp. 79–94 (2003)

14. Störrle, H.: Semantics of Interactions in UML 2.0. In: Hosking, J., Cox, P. (eds.) Proc. IEEE
Symp. Human Centric Computing Lang. and Env., pp. 129–136. IEEE Computer Society
(2003)

15. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of
Logic Programming 12(1-2), 67–96 (2012)

http://www.jot.fm/issues/issue201003/article2/
http://www.omg.org/spec/UML/2.4.1/

	Efficient Representation of Timed UML 2 Interactions
	Introduction
	Related Work
	UML 2 Interactions
	Symbolic Representation of UML 2 Interactions
	Traces of an Interaction Structure
	Deriving an Interaction Structure

	Validation
	Conclusions and Future Work

