56 research outputs found

    Two-Dimensional Phase-Fluctuating Superconductivity in Bulk-Crystalline NdO0.5_{0.5}F0.5_{0.5}BiS2_2

    Full text link
    We present a combined growth and transport study of superconducting single-crystalline NdO0.5_{0.5}F0.5_{0.5}BiS2_2. Evidence of two-dimensional superconductivity with significant phase fluctuations of preformed Cooper pairs preceding the superconducting transition is reported. This result is based on three key observations. (1) The resistive superconducting transition temperature TcT_c (defined by resistivity ρ0\rho \rightarrow 0) increases with increasing disorder. (2) As TTcT\rightarrow T_c, the conductivity diverges significantly faster than what is expected from Gaussian fluctuations in two and three dimensions. (3) Non-Ohmic resistance behavior is observed in the superconducting state. Altogether, our observations are consistent with a temperature regime of phase-fluctuating superconductivity. The crystal structure with magnetic ordering tendencies in the NdO0.5_{0.5}F0.5_{0.5} layers and (super)conductivity in the BiS2_2 layers is likely responsible for the two-dimensional phase fluctuations. As such, NdO0.5_{0.5}F0.5_{0.5}BiS2_2 falls into the class of unconventional ``laminar" bulk superconductors that include cuprate materials and 4Hb-TaS2_2

    Single domain stripe order in a high-temperature superconductor

    Get PDF
    The coupling of spin, charge and lattice degrees of freedom results in the emergence of novel states of matter across many classes of strongly correlated electron materials. A model example is unconventional superconductivity, which is widely believed to arise from the coupling of electrons via spin excitations. In cuprate high-temperature superconductors, the interplay of charge and spin degrees of freedom is also reflected in a zoo of charge and spin-density wave orders that are intertwined with superconductivity. A key question is whether the different types of density waves merely coexist or are indeed directly coupled. Here we use a novel neutron diffraction technique with superior beam-focusing that allows us to probe the subtle spin-density wave order in the prototypical high-temperature superconductor La1.88Sr0.12CuO4 under applied uniaxial pressure to demonstrate that it is immediately coupled with charge-density wave order. Our result shows that suitable models for high-temperature superconductivity must equally account for charge and spin degrees of freedom via uniaxial charge-spin stripe fluctuations

    In situ uniaxial pressure cell for x-ray and neutron scattering experiments

    Full text link
    We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes

    Pseudogap suppression by competition with superconductivity in La-based cuprates

    Get PDF
    We carried out a comprehensive high-resolution angle-resolved photoemission spectroscopy (ARPES) study of the pseudogap interplay with superconductivity in La-based cuprates. The three systems La2−xSrxCuO4, La1.6−xNd0.4SrxCuO4, and La1.8−xEu0.2SrxCuO4 display slightly different pseudogap critical points in the temperature versus doping phase diagram. We studied the pseudogap evolution into the superconducting state for doping concentrations just below the critical point. In this setting, near optimal doping for superconductivity and in the presence of the weakest possible pseudogap, we uncover how the pseudogap is partially suppressed inside the superconducting state. This conclusion is based on the direct observation of a reduced pseudogap energy scale and re-emergence of spectral weight suppressed by the pseudogap. Altogether these observations suggest that the pseudogap phenomenon in La-based cuprates is in competition with superconductivity for antinodal spectral weight

    Charge order above room-temperature in a prototypical kagome superconductor La(Ru1x_{1-x}Fex_{x})3_{3}Si2_{2}

    Full text link
    The kagome lattice is an intriguing and rich platform for discovering, tuning and understanding the diverse phases of quantum matter, which is a necessary premise for utilizing quantum materials in all areas of modern and future electronics in a controlled and optimal way. The system LaRu3_{3}Si2_{2} was shown to exhibit typical kagome band structure features near the Fermi energy formed by the Ru-dz2dz^{2} orbitals and the highest superconducting transition temperature TcT_{\rm c} {\simeq} 7K among the kagome-lattice materials. However, the effect of electronic correlations on the normal state properties remains elusive. Here, we report the discovery of charge order in La(Ru1x_{1-x}Fex_{x})3_{3}Si2_{2} (xx = 0, 0.01, 0.05) beyond room-temperature. Namely, single crystal X-ray diffraction reveals charge order with a propagation vector of (14\frac{1}{4},0,0) below TCOIT_{\rm CO-I} {\simeq} 400K in all three compounds. At lower temperatures, we see the appearance of a second set of charge order peaks with a propagation vector of (16\frac{1}{6},0,0). The introduction of Fe, which is known to quickly suppress superconductivity, does not drastically alter the onset temperature for charge order. Instead, it broadens the scattered intensity such that diffuse scattering appears at the same onset temperature, however does not coalesce into sharp Bragg diffraction peaks until much lower in temperature. Our results present the first example of a charge ordered state at or above room temperature in the correlated kagome lattice with bulk superconductivity.Comment: 15 pages, 8 figure

    Designing the stripe-ordered cuprate phase diagram through uniaxial-stress

    Get PDF
    The ability to efficiently control charge and spin in the cuprate high-temperature superconductors is crucial for fundamental research and underpins technological development. Here, we explore the tunability of magnetism, superconductivity, and crystal structure in the stripe phase of the cuprate La[Formula: see text]Ba[Formula: see text]CuO[Formula: see text], with [Formula: see text] = 0.115 and 0.135, by employing temperature-dependent (down to 400 mK) muon-spin rotation and AC susceptibility, as well as X-ray scattering experiments under compressive uniaxial stress in the CuO[Formula: see text] plane. A sixfold increase of the three-dimensional (3D) superconducting critical temperature [Formula: see text] and a full recovery of the 3D phase coherence is observed in both samples with the application of extremely low uniaxial stress of [Formula: see text]0.1 GPa. This finding demonstrates the removal of the well-known 1/8-anomaly of cuprates by uniaxial stress. On the other hand, the spin-stripe order temperature as well as the magnetic fraction at 400 mK show only a modest decrease under stress. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. However, strain produces an inhomogeneous suppression of the spin-stripe order at elevated temperatures. Namely, a substantial decrease of the magnetic volume fraction and a full suppression of the low-temperature tetragonal structure is found under stress, which is a necessary condition for the development of the 3D superconducting phase with optimal [Formula: see text]. Our results evidence a remarkable cooperation between the long-range static spin-stripe order and the underlying crystalline order with the three-dimensional fully coherent superconductivity. Overall, these results suggest that the stripe- and the SC order may have a common physical mechanism

    Designing the stripe-ordered cuprate phase diagram through uniaxial-stress

    Get PDF
    The ability to efficiently control charge and spin in the cuprate high-temperature superconductors is crucial for fundamental research and underpins technological development. Here, we explore the tunability of magnetism, superconductivity and crystal structure in the stripe phase of the cuprate La_2-xBa_xCuO_4, with x = 0.115 and 0.135, by employing temperature-dependent (down to 400 mK) muon-spin rotation and AC susceptibility, as well as X-ray scattering experiments under compressive uniaxial stress in the CuO_2 plane. A sixfold increase of the 3-dimensional (3D) superconducting critical temperature T_c and a full recovery of the 3D phase coherence is observed in both samples with the application of extremely low uniaxial stress of 0.1 GPa. This finding demonstrates the removal of the well-known 1/8-anomaly of cuprates by uniaxial stress. On the other hand, the spin-stripe order temperature as well as the magnetic fraction at 400 mK show only a modest decrease under stress. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. However, a substantial decrease of the magnetic volume fraction and a full suppression of the low-temperature tetragonal structure is found at elevated temperatures, which is a necessary condition for the development of the 3D superconducting phase with optimal T_c. Our results evidence a remarkable cooperation between the long-range static spin-stripe order and the underlying crystalline order with the three-dimensional fully coherent superconductivity. Overall, these results suggest that the stripe- and the SC order may have a common physical mechanism.Comment: 11 pages, 5 figures. This work builds on our earlier findings on LBCO, arXiv:2008.01159, and substantially expands i

    Pseudogap Suppression by Competition with Superconductivity in La-Based Cuprates

    Get PDF
    We have carried out a comprehensive high-resolution angle-resolved photoemission spectroscopy (ARPES) study of the pseudogap interplay with superconductivity in La-based cuprates. The three systems La2x_{2-x}Srx_xCuO4_4, La1.6x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4, and La1.8x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4 display slightly different pseudogap critical points in the temperature versus doping phase diagram. We have studied the pseudogap evolution into the superconducting state for doping concentrations just below the critical point. In this setting, near optimal doping for superconductivity and in the presence of the weakest possible pseudogap, we uncover how the pseudogap is partially suppressed inside the superconducting state. This conclusion is based on the direct observation of a reduced pseudogap energy scale and re-emergence of spectral weight suppressed by the pseudogap. Altogether these observations suggest that the pseudogap phenomenon in La-based cuprates is in competition with superconductivity for anti-nodal spectral weight

    Oceanic response to Pliensbachian and Toarcian magmatic events: Implications from an organic-rich basinal succession in the NW Tethys

    Get PDF
    The Bächental bituminous marls (Bächentaler Bitumenmergel) belonging to the Sachrang Member of the Lower Jurassic Middle Allgäu Formation were investigated using a multidisciplinary approach to determine environmental controls on the formation of organic-rich deposits in a semi-restricted basin of the NW Tethys during the Early Jurassic. The marls are subdivided into three units on the basis of mineralogical composition, source-rock parameters, redox conditions, salinity variations, and diagenetic processes. Redox proxies (e.g., pristane/phytane ratio; aryl isoprenoids; bioturbation; ternary plot of iron, total organic carbon, and sulphur) indicate varying suboxic to euxinic conditions during deposition of the Bächental section. Redox variations were mainly controlled by sea-level fluctuations with the tectonically complex bathymetry of the Bächental basin determining watermass exchange with the Tethys Ocean. Accordingly, strongest anoxia and highest total organic carbon content (up to 13%) occur in the middle part of the profile (upper tenuicostatum and lower falciferum zones), coincident with an increase in surface-water productivity during a period of relative sea-level lowstand that induced salinity stratification in a stagnant basin setting. This level corresponds to the time interval of the lower Toarcian oceanic anoxic event (T-OAE). However, the absence of the widely observed lower Toarcian negative carbon isotope excursion in the study section questions its unrestricted use as a global chemostratigraphic marker. Stratigraphic correlation of the thermally immature Bächental bituminous marls with the Posidonia Shale of SW Germany on the basis of C27/C29 sterane ratio profiles and ammonite data suggests that deposition of organic matter-rich sediments in isolated basins in the Alpine realm commenced earlier (late Pliensbachian margaritatus Zone) than in regionally proximal epicontinental seas (early Toarcian tenuicostatum Zone). The late Pliensbachian onset of reducing conditions in the Bächental basin coincided with an influx of volcaniclastic detritus that was possibly connected to complex rifting processes of the Alpine Tethys and with a globally observed eruption-induced extinction event. The level of maximum organic matter accumulation in the Bächental basin corresponds to the main eruptive phase of the Karoo-Ferrar large igneous province (LIP), confirming its massive impact on global climate and oceanic conditions during the Early Jurassic. The Bächental marl succession is thus a record of the complex interaction of global (i.e., LIP) and local (e.g., redox and salinity variations, basin morphology) factors that caused reducing conditions and organic matter enrichment in the Bächental basin. These developments resulted in highly inhomogeneous environmental conditions in semi-restricted basins of the NW Tethyan domain during late Pliensbachian and early Toarcian time

    The regulatory mechanisms of NG2/CSPG4 expression

    Get PDF
    Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types
    corecore