33 research outputs found

    A continental record of the Carnian Pluvial Episode (CPE) from the Mercia Mudstone Group (UK):palynology and climatic implications

    Get PDF
    The generally arid Late Triassic climate was interrupted by a wet phase during the mid-Carnian termed the Carnian Pluvial Episode (CPE). Quantitative palynological data from the Mercia Mudstone Group in the Wessex Basin (UK) reveal vegetation changes and palaeoclimate trends. Palynostratigraphy and bulk organic carbon isotope data allow correlation to other Carnian successions. The palynostratigraphy indicates that the Dunscombe Mudstone is Julian and the lowest part of the overlying Branscombe Mudstone Formation is Tuvalian. The Aulisporites acme characterizing the CPE in Tethyan successions and the Germanic Basin is missing in the UK. The quantitative palynological record suggests the predominance of xerophyte floral elements with a few horizons of increased hygrophytes. A humidity signal is not seen owing to the dry climate in central Pangea. Also, the signal might be masked by the overrepresentation of xerophyte regional pollen and the predominance of xerophyte hinterland flora. The bias towards regional pollen rain is enhanced by the potential increase in continental runoff related to seasonally humid conditions and differences in pollen production rates and transport mechanisms. The vegetation of British CPE successions suggests a more complex climate history during the Carnian, indicating that the CPE is not recognized by the same changes everywhere

    Stable Carbon and Nitrogen Isotopes in a Peat Profile Are Influenced by Early Stage Diagenesis and Changes in Atmospheric CO2 and N Deposition

    Get PDF
    In this study, we test whether the δ13C and δ15N in a peat profile are, respectively, linked to the recent dilution of atmospheric δ13CO2 caused by increased fossil fuel combustion and changes in atmospheric δ15N deposition. We analysed bulk peat and Sphagnum fuscum branch C and N concentrations and bulk peat, S. fuscum branch and Andromeda polifolia leaf δ13C and δ15N from a 30-cm hummock-like peat profile from an Aapa mire in northern Finland. Statistically significant correlations were found between the dilution of atmospheric δ13CO2 and bulk peat δ13C, as well as between historically increasing wet N deposition and bulk peat δ15N. However, these correlations may be affected by early stage kinetic fractionation during decomposition and possibly other processes. We conclude that bulk peat stable carbon and nitrogen isotope ratios may reflect the dilution of atmospheric δ13CO2 and the changes in δ15N deposition, but probably also reflect the effects of early stage kinetic fractionation during diagenesis. This needs to be taken into account when interpreting palaeodata. There is a need for further studies of δ15N profiles in sufficiently old dated cores from sites with different rates of decomposition: These would facilitate more reliable separation of depositional δ15N from patterns caused by other processes

    A gymnosperm affinity for <i>Ricciisporites tuberculatus</i> Lundblad: implications for vegetation and environmental reconstructions in the Late Triassic

    No full text
    Ricciisporites tuberculatus Lundblad is a prominently sculptured palynomorph that is dispersed at maturity as tetrads. It has a wide geographic distribution and reaches a stratigraphically important acme in the Norian and Rhaetian of Europe. As it has not yet been found in situ in a fossilized reproductive structure, its botanical affinity is poorly understood. Recent work on the morphology and ultrastructure of R. tuberculatus favours an affinity with gymnosperms rather than spore plants. In the present contribution, we re-evaluate Triassic–Jurassic (Tr-J) palynological records and discuss the consequences of a gymnosperm affinity for R. tuberculatus for Late Triassic vegetation reconstruction, as well as inferred palaeoecological interpretations. At a Tr-J boundary locality in East Greenland, the relative abundance of R. tuberculatus through time is similar to the Bennettitales Anomozamites and Pterophyllum. We suggest that R. tuberculatus may have been produced by a gymnosperm characterised by an herbaceous ruderal life habit. The poor preservation potential of the vegetative structures of such a plant may explain why R. tuberculatus has not yet been found in situ in a fossil reproductive structure. Moreover, principal component analysis of Late Triassic palynological records show that the vectors of R. tuberculatus and the common pollen type Classopollis plot in opposite directions. We suggest that the parent plants of R. tuberculatus and Classopollis (the Cheirolepidiaceae) may have had different ecological and/or climatological preferences

    Macroecological patterns of the terrestrial vegetation history during the end-Triassic biotic crisis in the central European Basin: A palynological study of the Bonenburg section (NW-Germany) and its supra-regional implications

    No full text
    The end-Triassic mass extinction is often linked to environmental and climate change triggered by the activity of the Central Atlantic Magmatic Province ca. 201 Mya. In the German Triassic Basin, the transition from pre-extinction to the so-called extinction interval is documented from the fossil-rich Contorta Beds to the mostly barren Triletes Beds. However, despite the lack of macrofossils, plant microfossils are present and studying palynomorph diversity and assemblages still give us a detailed insight into the impact of environmental changes on the flora. Here, we present data from 64 samples taken from the new Triassic-Jurassic section ‘Bonenburgʼ, which originates from a brick quarry in North Rhine-Westphalia (Germany), and encompasses the Triassic–Jurassic transition in the Germanic Basin. Using palynofacies analysis, we document changes in the depositional environment. Based on terrestrial and marine palynological analysis, we also document quantitative changes in four assemblage zones for correlation with other European sections. Further, we discuss the vegetation history with special focus on the transition from the pre-extinction to extinction interval (Contorta to Triletes Beds). Additionally, we investigate palynofloral diversity patterns especially prior to the Triassic-Jurassic transition, to evaluate the ecological impact of environmental upheaval on the flora. Furthermore, we document intraspecific palynomorph variability, indicating a variety of aberrant spore, pollen, and tetrad formation, in the middle Rhaetian, the lowermost upper Rhaetian, and the lowest Hettangian. Our study supports existing paleogeographical reconstructions for the region and reveals, that vegetation underwent gradual changes with intermediate successional stages rather than dramatic extinction or drastic turnover as documented for animals. Diversity patterns coinciding with aberrant palynomorph occurrences, potentially associated with episodes of increased environmental stress, suggest three disturbances pulses of probably increasing severity. Although environmental stress in the context of diversity patterns seems a likely explanation for the occurrence of aberrant palynomorphs, further investigations are needed to better understand the underlying mechanisms and their evolutionary significance and temporal connection with biotic crises

    Milankovitch-scale palynological turnover across the Triassic–Jurassic transition at St. Audrie's Bay, SW UK

    Get PDF
    <p>A high-resolution palynological study of the Triassic–Jurassic boundary in the St. Audrie's Bay section revealed a palynofloral transition interval with four pronounced spore peaks in the Lilstock Formation. Regular cyclic increases in palynomorph concentrations can be linked with periods of increased runoff, and correspond to the orbital eccentricity cycle. Spore peaks can be related to precession-induced variations in monsoon strength. An implication is that the initial carbon isotope excursion lasted for at least 20 ka. Emergence during deposition of the Cotham Member had an influence on one of the peaks, which is dominated by spore-producing pioneer plants (e.g. horsetails and liverworts). There is no compelling evidence of a global end-Triassic spore spike that, by analogy with the K–T boundary fern spike, could be related to a catastrophic mass extinction event. Climate change is a more plausible mechanism to explain the increased amount of spores. </p

    Extreme weathering/erosion during the Miocene Climatic Optimum: Evidence from sediment record in the South China Sea

    No full text
    Investigating the interplay between continental weathering and erosion, climate, and atmospheric CO2 concentrations is significant in understanding the mechanisms that force the Cenozoic global cooling and predicting the future climatic and environmental response to increasing temperature and CO2 levels. The Miocene represents an ideal test case as it encompasses two distinct extreme climate periods, the Miocene Climatic Optimum (MCO) with the warmest time since 35 Ma in Earth\u27s history and the transition to the Late Cenozoic icehouse mode with the establishment of the east Antarctic ice sheet. However the precise role of continental weathering during this period of major climate change is poorly understood. Here we show changes in the rates of Miocene continental chemical weathering and physical erosion, which we tracked using the chemical index of alteration (CIA) and mass accumulation rate (MAR) respectively from Ocean Drilling Program (ODP) Site 1146 and 1148 in the South China Sea. We found significantly increased CIA values and terrigenous MARs during the MCO (ca. 17-15 Ma) compared to earlier and later periods suggests extreme continental weathering and erosion at that time. Similar high rates were revealed in the early-middle Miocene of Asia, the European Alps, and offshore Angola. This suggests that rapid sedimentation during the MCO was a global erosion event triggered by climate rather than regional tectonic activity. The close coherence of our records with high temperature, strong precipitation, increased burial of organic carbon and elevated atmospheric CO2 concentration during the MCO argues for long-term, close coupling between continental silicate weathering, erosion, climate and atmospheric CO2 during the Miocene. Copyright 2009 by the American Geophysical Union

    Milankovitch-scale palynological turnover across the Triassic–Jurassic transition at St. Audrie's Bay, SW UK

    No full text
    <p>A high-resolution palynological study of the Triassic–Jurassic boundary in the St. Audrie's Bay section revealed a palynofloral transition interval with four pronounced spore peaks in the Lilstock Formation. Regular cyclic increases in palynomorph concentrations can be linked with periods of increased runoff, and correspond to the orbital eccentricity cycle. Spore peaks can be related to precession-induced variations in monsoon strength. An implication is that the initial carbon isotope excursion lasted for at least 20 ka. Emergence during deposition of the Cotham Member had an influence on one of the peaks, which is dominated by spore-producing pioneer plants (e.g. horsetails and liverworts). There is no compelling evidence of a global end-Triassic spore spike that, by analogy with the K–T boundary fern spike, could be related to a catastrophic mass extinction event. Climate change is a more plausible mechanism to explain the increased amount of spores. </p

    Palynostratigraphy and vegetation history of the Triassic–Jurassic transition in East Greenland

    No full text
    <p>We present a palynological study of a terrestrial Triassic–Jurassic (Tr–J; <em>c</em>. 200 Ma) boundary section at Astartekløft, East Greenland. We have generated a new palynostratigraphic scheme and vegetation history for this locality, and have integrated these with existing carbon isotope records. Samples for palynological analysis were collected from precisely the same stratigraphic horizons as plant macrofossils and samples used for geochemical analyses. Our results highlight four local sporomorph assemblage zones that are compositionally distinct from each other at Astartekløft. The extremely low abundance of <em>Classopollis</em> pollen in all samples, and the pronounced decline of <em>Ricciisporites tuberculatus</em> during the Late Rhaetian are notable features of the sporomorph record of Tr–J vegetation at Astartekløft. Correlation of Astartekløft and a marine Tr–J boundary section at St Audrie’s Bay, UK, provides no support for the idea that extinction and diversity loss in terrestrial ecosystems preceded biotic change in marine ecosystems at the Tr–J. Instead, the available data support suggestions that the onset of the Tr–J biotic crisis was synchronous in terrestrial and marine environments. Peak extinction among plants at Astartekløft occurred relatively late in the sequence of events across the Tr–J, and may represent a response to long-term cumulative effects of volcanism at this time. </p

    Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction

    Get PDF
    The end-Permian mass extinction event (∼252 Mya) is associated with one of the largest global carbon cycle perturbations in the Phanerozoic and is thought to be triggered by the Siberian Traps volcanism. Sizable carbon isotope excursions (CIEs) have been found at numerous sites around the world, suggesting massive quantities of 13C-depleted CO2 input into the ocean and atmosphere system. The exact magnitude and cause of the CIEs, the pace of CO2 emission, and the total quantity of CO2, however, remain poorly known. Here, we quantify the CO2 emission in an Earth system model based on new compound-specific carbon isotope records from the Finnmark Platform and an astronomically tuned age model. By quantitatively comparing the modeled surface ocean pH and boron isotope pH proxy, a massive (∼36,000 Gt C) and rapid emission (∼5 Gt C yr-1) of largely volcanic CO2 source (∼-15%) is necessary to drive the observed pattern of CIE, the abrupt decline in surface ocean pH, and the extreme global temperature increase. This suggests that the massive amount of greenhouse gases may have pushed the Earth system toward a critical tipping point, beyond which extreme changes in ocean pH and temperature led to irreversible mass extinction. The comparatively amplified CIE observed in higher plant leaf waxes suggests that the surface waters of the Finnmark Platform were likely out of equilibrium with the initial massive centennial-scale release of carbon from the massive Siberian Traps volcanism, supporting the rapidity of carbon injection. Our modeling work reveals that carbon emission pulses are accompanied by organic carbon burial, facilitated by widespread ocean anoxia

    Multi-Year Leaf-Level Response to Sub-Ambient and Elevated Experimental CO2 in Betula nana

    No full text
    The strong link between stomatal frequency and CO2 in woody plants is key for understanding past CO2 dynamics, predicting future change, and evaluating the significant role of vegetation in the hydrological cycle. Experimental validation is required to evaluate the long-term adaptive leaf response of C3 plants to CO2 conditions; however, studies to date have only focused on short-term single-season experiments and may not capture (1) the full ontogeny of leaves to experimental CO2 exposure or (2) the true adjustment of structural stomatal properties to CO2, which we postulate is likely to occur over several growing seasons. We conducted controlled growth chamber experiments at 150 ppmv, 450 ppmv and 800 ppmv CO2 with woody C3 shrub Betula nana (dwarf birch) over two successive annual growing seasons and evaluated the structural stomatal response to atmospheric CO2 conditions. We find that while some adjustment of leaf morphological and stomatal parameters occurred in the first growing season where plants are exposed to experimental CO2 conditions, amplified adjustment of non-plastic stomatal properties such as stomatal conductance occurred in the second year of experimental CO2 exposure. We postulate that the species response limit to CO2 of B. nana may occur around 400-450 ppmv. Our findings strongly support the necessity for multi-annual experiments in C3 perennials in order to evaluate the effects of environmental conditions and provide a likely explanation of the contradictory results between historical and palaeobotanical records and experimental data
    corecore