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Abstract

The generally arid Late Triassic climate was interrupted by a wet phase during the mid
Carnian termed Carnian Pluvial Episode (CPE). Quantitative palynological data from the
Mercia Mudstone Group in the Wessex Basin (UK), reveals vegetation changes and

palaeoclimate trends. Palynostratigraphy and bulk organic carbon isotope data enable
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correlation to other Carnian successions. The palynostratigraphy indicates that the
Dunscombe Mudstone is Julian and the lowest part of the overlying Branscombe Mudstone
Formation is Tuvalian.. The Aulisporites acme characterizing the CPE in Tethyan successions
and the Germanic Basin, is missing in the UK. The quantitative palynological record suggests
the predominance of xerophyte floral elements with a few horizons of increased hygrophytes.
A humidity signal is not seen due to the dry climate in central Pangea. Secondly, the signal
might be masked by the overrepresentation of xerophyte regional pollen and the
predominance of xerophyte hinterland flora. The bias towards regional pollen rain is enhanced
by the potential increase in continental runoff related to seasonally humid conditions and
differences in pollen production rates and transport mechanisms. The vegetation of British
CPE successions suggests a more complex climate history during the Carnian indicating that

the CPE is not recognized by the same changes everywhere.

Supplementary material: Detailed lithological log of the Strangman’s Cove (Devon)
outcrop with the description of the MMG lithostratigraphical units, description of the
laboratory techniques, seven photoplates with selected spores and pollen grains, a list of all
identified palynomorphs, Excel sheets with the palynological and palynofacies counts, bulk
organic carbon isotope ratios and TOC values of the Strangman’s Cove outcrop are available

at https://doi.org/xxxx
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During the Late Triassic the continental interior of Pangea was characterized by
predominantly arid climates in low-mid latitudes with strong seasonality and a monsoonal
regime (Kutzbach & Gallimore 1989; Parrish 1993; Sellwood & Valdes 2006; Preto et al.
2010). In central Pangea (Preto et al. 2010), the depositional setting of the Mid- to Late
Triassic Mercia Mudstone Group (MMG) in the Wessex Basin (SW England, UK) was
marked by playa lake deposits with red beds and local evaporites similar to the Keuper Group
of the Southern Permian (or Germanic) Basin (Bachman et al. 2010; Hounslow et al. 2012).
During the Carnian, the depositional style of the Mercia Mudstone Group changed
significantly, marked by short-lived lacustrine interval and more pronounced fluvial influence
(Simms & Ruffell 1989, 1990; Porter & Gallois 2008; Hounslow & Ruffell 2006; Ruffell et
al. 2016). In the Wessex Basin, this transition is manifested by the lithological change from
gypsiferous red mudstone to a green-grey mudstones with locally sandy beds: termed the
Dunscombe Mudstone Formation (Porter & Gallois 2008; Ruffell et al. 2016). This facies
change is also expressed in the Keuper Group in the Germanic Basin, where red playa lake
deposits were temporarily interrupted by sandy fluvial channel and overbank deposits of the
Schilfsandtstein (Stuttgart Formation) during the late Julian (e.g., Bachmann et al. 2010;
Kozur & Bachmann 2010; Shukla et al. 2010). The lithological shift seen at the base of the
Dunscombe Mudstone Formation and in the Schilfsandstein may be coincident with a climate
change towards more humid conditions known as the Carnian Pluvial Episode (CPE, Ruffell
et al. 2016), which in other localities, appears to have commenced in the early Carnian, close
to the early to late Julian boundary (Dal Corso ef al. 2015; Mueller et al. 2016a, b). The
global nature of the CPE has been debated, but evidence from successions in Europe (e.g.,
Schlager & Schollnberger 1974; Simms & Ruffell 1989, 1990), the Middle East (Bialik et al.
2013), Iberia and eastern North America (Arche & Lopez-Gémez 2014) and also Asia

(Hornung et al. 2007 a, b; Nakada et al. 2014; Sun et al. 2016), suggest that the CPE wet
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conditions had global extent (Ogg 2015; Ruffell et al. 2016). Previously Visscher ef al. (1994)
had rejected the presence of a wetter climatic phase during the Carnian based on
palynological evidence from the Schilfsandstein explaining the facies change by the
establishment of a large river system in an overall dry floodplain, but with locally wet
environments near the river banks; with the present-day Nile Valley as an analogue.

Despite differing local interpretations, major environmental change is evident from the
switching in lithology occurring in both continental and marine Carnian successions. The CPE
was probably accompanied by sea level changes, global warming (Trotter et al. 2015; Sun et
al. 2016) increased continental weathering (Rostési ef al. 2011), demise of carbonate
platforms (Keim et al. 2006; Breda et al. 2009; Lukeneder et al. 2012; Arche & Lépez-
Gomez 2014) and deepening of the carbonate compensation depth in the oceans (Rigo et al.
2007; Lukeneder et al. 2012; Nakada et al. 2014). At low palaeolatitudes enhanced
terrigenous input appears to have lasted from the late Julian (Julian 2) to the early Tuvalian
(Roghi et al. 2010, Rostasi et al. 2011). The CPE is characterized by wet-dry cycles and
multiple humid pulses; before the climate returned to persistent aridity in the late Carnian or
Norian (Preto et al. 2010; Lukeneder ef al. 2012; Bialik et al. 2013; Mueller et al. 2016b;
Lopez-Gomez et al. 2017). At high latitudes (in the Boreal Realm, e.g Svalbard) higher
temperatures, increased humidity and the local development of coals represent the equivalent
of the CPE (Mueller et al. 2016a).

In the marine realm the onset of the CPE in the mid Julian is associated with a negative
carbon isotope excursion in the marine realm suggesting the injection of a significant amount
of C-depleted CO; into the atmosphere (Dal Corso ef al. 2012, 2015). The first evidence of a
negative carbon isotope excursionin the CPE from a terrestrial realm has been provided by
the Wiscombe Park-1 Borehole succession in the MMG from the Wessex Basin (Miller et al.

2017). There, the initial carbon isotope excursion (labelled IIE) in both total organic carbon
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and plant leaf waxes (Miller et al. 2017), is followed by four other negative C-isotope
excursions. Miller et al. (2017) recognised ca. 413 ka eccentricity cycles from the Dunscombe
Mudstone Formation suggesting the establishment of a duration for the isotope excursions,
lasting for ca. 1.09 Ma ;comparable to previous estimates of 0.8—1.2 Ma from marine units in
China (Zhang et al. 2015). The release of isotopically lighter CO, into the atmosphere caused
the intensification of Pangean monsoon activity and is the most likely responsible for the
increase in rainfall (Parrish 1993). The origin of 13C—depleted CO; and the carbon isotope
excursion may be linked to enhanced volcanic activity and associated feedbacks (warming,
dissociation of methane clathrates, reduction in marine primary productivity) (Simms et al.
1995; Hornung et al. 2007a, b). The emplacement of the Wrangellia Large Igneous Province
basalts is considered the most likely trigger of the CPE (Furin et al. 2006, Dal Corso et al.
2012) although Greene et al. (2010) and Xu et al. (2014) showed that the Wrangellia
eruptions started earlier than the Carnian. There is evidence for regionally widespread
contemporaneous exhalative, acidic volcanic activity from the Anatolian Terrane in Greece
and Turkey (Huglu-Pindos Series: Moix et al. [2008, 2013]), Apennines (Furin et al. 2006)
and Iberia (e.g., Arche & Lopez-Gomez 2014), but the extent of this volcanic activity is less
voluminous compared to the Wrangellia LIP.

Changes in plant communities are good proxies for terrestrial climate, therefore palaecobotany
and palynology have been widely utilized in understanding the climate change during the Late
Triassic (e.g., Reitz 1985; Visscher et al. 1994; Roghi 2004, Pott et al. 2008; Roghi et al.
2010; Bonis & Kiirschner 2012; Mueller ef al. 2016a, b). Palynology of sediments from the
CPE typically show a shift towards hygrophyte vegetation with increased abundance of ferns,
equisetaleans and cycadaleans (Roghi 2004; Hochuli & Vigran 2010; Roghi et al. 2010;
Mueller et al. 2016a, b). Particularly distinctive is the widely distributed Aulisporites

astigmosus assemblage typical of the late Julian in the western Tethys (Roghi ef al. 2010).



125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Aulisporites astigmosus 1s a hygrophyte vegetation element and its widespread distribution
during the Carnian is a crucial argument for the global scale of a wet phase (Roghi et al.
2010). However, the palaeoclimatic significance of the Aulisporites acme during the Carnian
is controversial (Visscher ef al. 1994) and some recent studies indicate that it may be
diachronous (Mueller et al. 2016a).

Here we provide quantitative palynological data from four terrestrial successions of the
Dunscombe Mudstone Formation from the UK and interpret the vegetation changes and
palaeoclimate trends. The palynological data are further integrated with organic carbon
isotope stratigraphy and are compared to other Carnian successions in Europe, in order to
evaluate regional differences.

Geological setting

Thick (up to 1 km, usually ca. 450 m) packages of fluvial-lacustrine sediments of the Mercia
Mudstone Group accumulated in SW England during the Mid-Late Triassic, in fault-bounded
basins that were formed during the syn-rift phase of crustal extension as a consequence of
Pangean rifting and thermal relaxation (Ruffell & Shelton 1999; Howard et al. 2008; McKie
& Williams 2009; Hounslow et al. 2012; Fig. 1). In the Wessex Basin, the Mercia Mudstone
Group comprises ca. 450 m of predominantly red mudstones and local evaporites that indicate
deposition in a low-relief sabkha environment in a hot desert (Gallois & Porter 2006;
Hounslow & Ruffell 2006; Hounslow et al. 2012; Fig. 1). The MMG in central and southern
England has been nationally rationalised into the Sidmouth Mudstone Formation, Arden
Sandstone Formation, Branscombe Mudstone Formation and the Blue Anchor Formation
(Howard et al. 2008 (Fig. 1, detailed description of each unit can be found in the
Supplementary Data). In the Wessex Basin, Dunscombe Mudstone Formation distinguishes a
variation of the mid parts of the MMG with predominantly green, grey to purple mudstone

unit between the red mudstones of the under-and overlying Sidmouth and Branscombe
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Mudstone formations (Porter & Gallois 2008). In the coastal sections in Devon, the Arden
Sandstone Fm of Howard et al. (2008) occupies only the mid 24 m of the Dunscombe
Mudstone Fm (Warrington 2004), so we prefer to use the formation designations defined used
by Gallois (2001), Gallois & Porter (2006) and Porter & Gallois (2008), which better
represent the local lithological change. The Dunscombe Mudstone Formation consists of a 25
to 43 m-thick laterally variable succession of green, purple and grey laminated mudstones
interbedded in the lower part with thin (typically, 5 cm to 30 cm) calcareous
siltstone/sandstone beds. Breccia beds, caused by gypsum/anhydrite and halite collapse are
also present (Gallois 2003; Gallois & Porter 2006; Porter & Gallois 2008). Palaeosols,
bioturbated horizons, hardgrounds and lag deposits are evidence of condensation and minor
hiatuses through the DMF (Gallois & Porter 2006). The DMF represents a fluvial-lacustrine
succession with shallow freshwater lakes fed by shallow distributary channels in low-relief
topography (Gallois & Porter 2006; Porter & Gallois 2008). On the Devon coast in the lower
part of the formation, a lenticular unit of calcareous siltstones and fine-grained sandstones,
(the Lincombe Member) is geographically restricted, but evidence of an oxygenated
freshwater lake (Gallois & Porter 2000).

The palynomorph assemblages of the Dunscombe Mudstone Fand Arden Sandstone
formations were reconnaissance sampled by Clarke (1965), Warrington (1967, 1970, 1971),
Fisher (1972), Warrington (1974, 1984), Warrington & Williams (1984), Warrington (1997)
and Kousis (2015). The previous studies of the Arden Sandstone Fm have suggested a late
Carnian (Tuvalian) age (e.g., Warrington et al. 1980; Barclay et al. 1997). The only work that
has systematically sampled the DMF in the Devon coastal area using the logs of Jeans (1978)
is that of Fisher (1985) who recognized an older and a younger Carnian assemblage. In
contrast, based on data from the nearby Wiscombe Park-1 Borehole, Miller et al. (2017)

assigned a Julian age to the DMF. Kozur (in Gallois & Porter 2006) found the conchostracan
8
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Laxitexella multireticulata within the Lincombe Member in the coastal sections which is
indicative of the early Carnian L. mucroreticulata Zone (Kozur & Weems 2010). This species
i1s common in the early Carnian ‘Estheria Beds’ (in the upper Grabfeld Formation in
Germany), but is also reported from the Schilfsandstein in Germany. Hounslow et al. (2002)
suggested that the Ladinian-Carnian boundary may be in the upper part of the Sidmouth
Mudstone Formation and the Carnian-Norian boundary near the boundary between the DMF
and overlying Branscombe Mudstone Formation, however, this was based on hitherto
unpublished magnetostratigraphic data. The DMF crops out along coastal cliffs between
Higher Dunscombe Cliff and Strangman’s Cove and has a wide distribution in the sub-surface
of the Wessex Basin (Gallois & Porter 2006; Porter & Gallois 2008) (Fig. 1). The DMF was
cored in two boreholes Wiscombe Park 1 and 2 (WP-1 and 2) about 5 km north of the coastal
outcrop (Porter & Gallois 2008) (Fig. 1). Further north in Somerset, several lenticular
sandstone units of the Arden Sandstone Fm can be found around Taunton, North Curry and
Sutton Mallet areas (Fig. 1), similar to the Lincombe Member of the Dunscombe Mudstone
Fm. However, the stratigraphic correlation of these arenaceous units remains uncertain
(Gallois 2003; Gallois & Porter 2006). On lithostratigraphical and palaeoenvironmental
grounds, Howard et al. (2008) argued that the sandstone bodies in Somerset are
contemporaneous with the Lincombe Member, but Gallois (2001) suggested they might occur
in a higher stratigraphic position within the DMF compared to the Lincombe Member.
Methods

Palynology

Palynological samples were taken from four locations: the Strangman's Cove outcrop, the
Wiscombe Park-1 Borehole section in Devon and Sutton Mallet and Lipe Hill outcrops in
Somerset. Detailed description of the sample locations can be found in the Supplementary

Data. A detailed lithological log for the WP-1 and Strangman’s Cove sections is provided in
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the Supplementary Data (Fig. S1) with the exact position of the palynological samples. A total
of 104 samples were processed for palynological analysis from the studied sections and cores.
The palynological preparation follows standard procedures Wood et al. (1996) and as
described in Kuerschner et al. (2007). Details of the preparation technique can be found in the
Supplementary Data. The palynological slides and organic residues are stored at the
Department of Geosciences, University of Oslo, Norway. In each sample, ca. 300 terrestrial
palynomorphs (spores and pollen) were determined after scanning 2-4 slides (quantitative
analysis). After encountering at least 300 terrestrial taxa all remaining slides were scanned for
rare taxa (qualitative analysis). Lycopodium, undetermined palynomorphs and aquatic
palynomorphs were counted concomitantly but excluded from the palynomorph sum.
Identification of the taxa is based on the works of Klaus (1960), Clarke (1965), Schulz (1967),
Scheuring (1970, 1978), Fisher (1972), Roghi (2004), Planderova (1972, 1980), Van der Eem
(1983), Hochuli & Frank (2000), Mehdi et al. (2009), Fijatkowska-Mader et al. (2015),
Paterson et al. (2016). Spore coloration index (SCI) values follow those of Batten (2002).
Relative palynomorph abundances were calculated and plotted using the Tilia/TiliaGraph
computer program (Grimm, 1991-2001). Palynomorph assemblages at Strangman’s Cove and
Lipe Hill were distinguished by stratigraphically constrained cluster analysis using CONISS
within Tilia (Grimm 1987). For plotting this diagram, the counted abundance data of all
identified taxa were used, but unidentified forms and aquatics were excluded from the cluster
analysis. For palynofacies analysis different types of sedimentary organic matter (SOM)
particles were distinguished in the samples. Approximately 300 SOM particles were counted
in each sample. The subdivision of the different groups and terminology follows Oboh-
Ikuenobe & de Villiers (2003). The complete palynofacies and palynomorph raw data set is

provided in the Supplementary Data (Table S3-S9).
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224  Palaeoecological affinity of palynomorphs and palynomorph source areas

225 The classification of dispersed palynomorphs as hygrophyte and xerophytes (Table S1,

226  Supplementary Data) is based on the concept of Visscher & Van der Zwan (1981), taking into
227 consideration the known or supposed ecological preferences of the parent plant. It can be
228 regarded as the first approximation of a climatic signal, yet it should be applied with caution
229 as the exact botanical affinity and ecological needs of many Mesozoic dispersed spore and
230 pollen are uncertain. All spores identified in this study are assigned to the hygrophyte group.
231 The elements of Alisporites spp. are considered to be transitional elements in the sense of
232 Visscher & Van der Zwan (1981), but some workers attribute them to a hygrophyte affinity
233 (e.g., Roghi et al. 2010; Whiteside et al. 2015, Mueller et al. 2016a). All other bisaccate

234 pollen, monosaccate pollen and the members of the Circumpolles group are assigned to the
235 xerophyte group (e.g., Hochuli & Vigran 2010; Roghi et al. 2010; Mueller et al. 2016a, b).
236 Cycadopites sp. and Aulisporites astigmosus are generally assigned to hygrophyte pollen

237  (Roghi 2004; Roghi et al. 2010).

238  Unlike plant megafossils which represent predominantly local vegetation, the palynological
239 assemblages record plant communities of different habitats, as well as local and regional

240 vegetation types (Jacobson & Bradshaw 1981; Demko et al. 1998; Kustatscher et al. 2012).
241  Elements of the local pollen rain originate within a distance of ca. 20 m from the sampling
242  site in the sense of Jacobson & Bradshaw (1981) (Table S1). Extra local elements grow

243 between 20 m and several hundred metres of the sampling site and regional pollen derives
244  from plants at greater distance (Jacobson & Bradshaw 1981). To assign the dispersed

245 palynomorphs to local or regional elements, the habitat of the parent plant and the transport
246  mechanisms characteristic for palynomorph types have to be considered. These environmental
247  parameters form the basis of the sporomorph ecogroup model (SEG) method of Abbink ez al.

248 (2004) for assigning the pollen and spores to various habitats. The SEG is an ecological
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model which groups dispersed palynomorphs into different habitats based on the known or
presumed parent plants (Abbink et al. 2004). The original SEG method was established for
Jurassic—Cretaceous assemblages, but several workers have applied the method to Triassic
palynomorph assemblages (Ruckwied et al. 2008; Gotz et al. 2009, 2011; Kustatscher et al.
2012; Paterson et al. 2016). In fully terrestrial settings four SEGs (habitats) are defined: river
SEG, dry and wet lowland SEG and upland/hinterland SEG. The upland/hinterland SEG
includes upland communities growing on higher terrains, well above groundwater level and is
never submerged by water (Abbink et al. 2004). The river SEG reflects riverbank
communities that are periodically submerged and subject to erosion, the dry lowland SEG
reflects floodplain vegetation that can be occasionally submerged, wet lowland SEG
represents marshes and swamps and the hinterland SEG reflects plant communities on well-
drained terrains, above groundwater table (Abbink et al. 2004). Due to proximity of habitats
to permanently wet environments (river, lake or marsh), the palynomorphs in the river and
lowland SEG consists of the local and extra local vegetation elements. The hinterland SEG
consists of the elements of the regional pollen flora that can be transported over long-distance
(Olivera et al. 2015) (Table S1).

Organic carbon isotope analysis and TOC

A total of 36 samples from the Strangman’s Cove outcrop were selected for 8"Croc analyses.
Details of the analytical technique and the data set (Table S10) can be found in the

Supplementary Data.

Results

Palynological assemblages
Only 36 out of 104 processed samples provided palynomorph assemblages. The rest of the

samples were barren or the scanned slides contained less than 10 specimens. The
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palynomorphs are generally moderately to well preserved, the wall colour varies between pale
yellow to golden brown, their SCI index ranges from 2 to 7 depending on wall-thickness
variations between the grains (Batten 2002). A total of 81 spore and pollen taxa and 5 aquatic
palynomorphs are distinguished. The most important palynomorphs are illustrated in Fig. 4. A
list of all identified taxa with full author citation and seven additional photoplates can be

found in the Supplementary Data.

Sidmouth Mudstone Formation

Palynological assemblages from the Sidmouth Mudstone Formation are only recorded in core
WP-1from depths 111.98 m and 109.11 m (Fig. 2). The assemblages are characterized by the
predominance of bisaccate pollen grains with a trilete mark (7riadispora group) (up to 45% of
the total abundance) along with Circumpolles (up to 22% of the total abundance). The species
Triadispora obscura, T. plicata and T. aurea are predominant and the stratigraphically useful
T. verrucata is present at 111.98 m. Among the Circumpolles group, various species of the
genus Partitisporites (e.g., P. novimundanus, P. scurrilis) and Praecirculina granifer are
common as well as Duplicisporites granulatus. Camerosporites secatus is present but rare in
both samples from the Wiscombe Park Borehole. Alete bisaccates are less common, with only
Alisporites spp. and Ovalipollis ovalis reaching more than 10% of the total spore-pollen flora.
Monosaccate pollen grains are represented only by Vallasporites ignacii. Aulisporites
astigmosus and Cycadopites sp. are observed in both samples, but they are minor components
of the assemblage. During quantitative analysis only a few spore taxa are documented; among
them Aratrisporites spp. and Calamospora tener are more common (2-3% of the total
abundance). Other spore taxa were recorded only during the qualitative analysis and then only
represented by one or two specimens (e.g., Thomsonisporis toralis, Verrucosisporites

morulae, Krauselisporites sp.).
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Dunscombe Mudstone Formation

The palynological assemblages from the Dunscombe Mudstone Formation recorded in the
Strangman’s Cove section and in the WP-1 core (Fig. 2) contain predominantly bisaccate
pollen grains and members of the Circumpolles group. Triadispora spp. are very frequent
throughout the DMF, especially the species T. obscura, T. plicata and T. sulcata. Alete
bisaccate pollen grains are represented mainly by Ovalipollis spp., Alisporites spp.,
Pityosporites sp. and Klausipollenites gouldii. The abundance of Minutosaccus crenulatus,
Ellipsovelatisporites plicatus and Microcachrydites doubingeri occasionally increases. Striate
bisaccate pollen grains (Lunatisporites acutus) are scarce. Among monosaccate pollen grains
only Enzonalasporites vigens is common. Patinasporites densus is recorded first in sample
WEOQ17 (within the Lincombe Member) in the Strangman’s Cove section and at the top of the
WP-1 core, at 56.51m (Fig. 2), but its abundance is low. Camerosporites secatus,
Duplicisporites granulatus and Praecirculina granifer are the most abundant members of the
Circumpolles group. Aulisporites astigmosus is virtually absent in the DMF except for one
questionable specimen at 71.41m in core WP-1. The colonial chlorococcalean algae
Plaesiodictyon mosellanum dominate the palynological samples from the Lincombe Member
at Strangman's Cove (Fig. 2). Cluster analysis helped to distinguish two assemblages
(assemblage I and II) at the Strangman’s Cove. Assemblage I and II differ mainly in the
increase of C. secatus among the Circumpolles and the presence of Patinaporites densus in
Assemblage II. The boundary between these two assemblages is placed between samples
WEO17 and WE109 (Fig. 2, Supplementary Data).

Branscombe Mudstone Formation

In the Branscombe Mudstone Formation, only one palynological assemblage (Assemblage I1I)
is encountered from the upper part of the Strangman’s Cove section, in sample WE203 (Fig.

2). This sample is characterized by an increase in the abundance of spores (up to 30% of the
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total abundance in WE203) compared to the DMF Calamospora tener, Porcellispora
longdonensis, Todisporites major and T. rotundiformis are the most frequent taxa. Among the
bisaccate pollen grains, the abundance of genus Triadispora decreases in favour of alete
bisaccates e.g., Alisporites spp., Klausipollenites gouldii and Ovalipollis spp. The abundance
of monossaccate pollen (Patinasporites densus, Enzonalasporites vigens, E. manifestus,
Pseudoenzonalasporites summus, Vallasporites ignacii) is higher compared to the DMF and
SME. Camerosporites secatus dominates the Circumpolles group. Partitisporites
quadruplices and cf. Partitisporites tenebrous are also recorded in this assemblage, while P.
maljawkinae, P. novimundanus and P. scurrilis are absent. The enigmatic sporomorph
Brodispora striata is also more frequent here compared to its single occurrence in the DMF.
Somerset Sandstone units

From the Somerset localities (Fig. 1), samples from the Sutton Mallet and Lipe Hill sections
yielded palynomorphs, but the samples atKnapp Quarry were barren (Fig. 3). At Lipe Hill two
assemblages are distinguished by cluster analysis (Assemblage LH I and II) (Fig. 3). Ten
samples from the Lipe Hill section in Somerset provided well-preserved assemblages (Fig. 4).
The palynomorph abundance in sample LH-1 is very low, and the proportion of the terrestrial
palynomorphs decreases significantly in samples LH-5 and LH-6 as these are especially rich
in algae, predominantly P. mosellanum (Fig. 3). The terrestrial palynomorphs are
characterized by the predominance of the Triadispora group (up to 60%), mainly Triadispora
obscura and T. plicata. The Circumpolles group is also common; the proportion of D.
granulatus is somewhat elevated compared to C. secatus. Two palynomorph assemblages are
distinguished by cluster analysis, with sample LH-1 as a third group that differs from the
other two assemblages by a low total palynomorph count. The two other assemblages differ
primarily in the proportion of Ovalipollis spp. (LH 120-30%, LH II ca. 10%) to Triadispora

spp (LH I ca. 40%, LH II up to 60%). Spores are present in all samples but their diversity and
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abundance is very low (<5%). In samples LH-1-LH-2, LH-5-LH-6 a few acanthomorph
acritarchs (Micrhystrydium sp.) are observed. Some of these acritarchs are probably reworked
as suggested by a darker wall colour or a damaged vesicle. However, some specimens are
well-preserved and show no signs of reworking.

In the Sutton Mallet section (Figs 1 and 3) the palynomorph assemblages predominantly
contain bisaccate pollen grains (Fig. 3). Triadispora spp. are the most frequent (ca. 50-60%).
Alete bisaccates are less common and are represented mainly by Ovalipollis ovalis, O.
lunzensis, Alisporites grauvogeli and A. grandis. Spores are more abundant in this locality
than in the coastal section and the WP-1 core. Aratrisporites spp. is especially frequent; it
reaches around 10% of the total abundance in each sample. The only striate bisaccate pollen
encountered is Lunatisporites acutus. Among the Circumpolles, Camerosporites secatus is
predominant, while other genera occur only in minor proportions. Ricciisporites tuberculatus
is recorded in sample SM2 at Sutton Mallet. Plaesiodictyon mosellanum is frequent also in the
samples from this locality. Botryococcus is present but less abundant than P. mosellanum. In
sample SM4 a few acanthomorph acritarchs (Micrhystrydium sp.) are observed. These
specimens are well-preserved and show no ambiguous signs of reworking.

Organic carbon isotopes

Bulk organic carbon isotope ratios (813 Croc) from WP-1 core (Miller et al. 2017) and samples
from the Strangman’s Cove section allow stratigraphical correlation of these data to be
assessed (Fig. 6). The Strangman’s Cove Section outcrop contains several negative isotope
excursions: the older part of the section shows larger variations but a gradual upwards shift to
more negative values, which culminates in the negative isotope excursion in sample WEO15.

A shift to more positive values occurs near the top of the DMF (Fig. 6).
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Discussion

Palynostratigraphy

Palynology provides a powerful tool in the correlation of Late Triassic marine and non-marine
successions; however, many assemblages are not dated independently with other fossils (e.g.,
ammonoids, conodonts) or other geochronological methods (e.g., radiometric dating) (Cirilli
2010). Important taxa often lack well-calibrated stratigraphical ranges and these are often
diachronous in different regions (e.g., between Germanic Basin and Alpine realm) (Cirilli
2010).

In the Southern Permian Basins (mainly Germany,Poland and southern North Sea), early
Julian assemblages are characterized by Triadispora verrucata, Camerosporites secatus,
Patinasporites densus and Vallasporites ignacii (e.g., Scheuring 1970, 1978; Ortowska-
Zwolinska 1983, 1985; Reitz 1985; Heunisch 1999; Kiirschner & Herngreen 2010;
Fijatkowska-Mader et al. 2015) with an increase in Aulisporites astigmosus in the younger
part of the Julian. The Tuvalian is characterized by the appearance of Ricciisporites
tuberculatus and Classopollis spp. (Kiirschner & Herngreen 2010). The common occurrence
of Granuloperculatipollis rudis with Classopollis zwolinskae and Chasmatosporites spp.
marks the beginning of the assumed Norian Granuloperculatipollis rudis Zone in the
Germanic basins (e.g., in the Arnstadt Formation) (Kiirschner & Herngreen 2010). However,
late Carnian and Norian palynological records with independent marine biostratigraphical
control or other geochronological age constrains are still lacking from the Germanic Triassic
basins (Cirilli 2010; Kiirschner & Herngreen 2010). In the GSSP section for the Carnian, Prati
di Stuores/Stuores Wiesen, Vallasporites ignacii, Patinasporites densus, Aulisporites
astigmosus and Camerosporites secatus all have their first occurrences in the lowermost part
of the Daxatina canadensis Subzone of the Trachyceras Zone (Fig. 5) in the lowermost

Carnian (Mietto et al. 2012).
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The palynological assemblages in Devon and Somerset yielded typical Carnian palynological
assemblages with Camerosporites secatus, various Partitisporites and Duplicisporites
species, Enzonalasporites spp., Vallasporites ignacii and Patinasporites densus. However,
distinct Julian palynomorph assemblages e.g., the Triadispora verrucata assemblage and the
Aulisporites astigmosus acme reported from the Schilfsandstein (Visscher et al. 1994) and
marine series in the Alps (Roghi ef al. 2010), are not seen in the British succession.

The common taxa in the uppermost part of the Sidmouth Mudstone Fm (Fig. 2),
Fartitisporites spp., Camerosporites secatus and Praecirculina granifer, are generally
characteristic in Carnian palynological assemblages in the Germanic realm (from the e.g.,
Lower Gipskeuper, Schilfsandstein and Upper Gipskeuper). Few specimens of Triadispora
verrucata are recorded in the studied part of the Sidmouth Mudstone Fm, which in contrast is
a common species in the early Julian assemblages from the Lower Gipskeuper in the
Germanic Basins (e.g., Kiirschner & Herngreen 2010; Fijatkowska-Mader et al. 2015) (Fig.
5). This species is frequent in the Triadispora verrucata subzone of the Camerosporites
secatus Zone in NW and central Europe (Kiirschner & Herngreen 2010), and in the verrucata
Subzone of the longdonensis Zone in the Polish Keuper (Ortowska-Zwolinska 1983, 1985;
Fijatkowska-Mader et al. 2015), and in the GTr 12-13 zones of Heunisch (1999) (Fig. 5). The
assemblages with abundant 7. verrucata are usually found in the upper part of the Lower
Gipskeuper in the Germanic Basin (Kiirschner & Herngreen 2010; Fijatkowska-Mader e? al.
2015), but the complete range of 7. verrucata has a longer duration, first appearing in the
Grenzdolomit (topmost Erfurt Formation, late Ladinian-earliest Carnian, [e.g., Szulc 2000])
and disappearing around the Carnian/Norian boundary in Germany (Heunisch 1999;
Kiirschner & Herngreen 2010). The palynological assemblages from the ‘Mudstone I’ unit of
Fisher (1985), which underlies the Dunscombe Mudstone Formation is similar to our

assemblage of the Sidmouth Mudstone Fm in the WP-1 core that contains Camerosporites
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secatus, Duplicisporites granulatus and Ovalipollis ovalis but lacks Enzonalasporites vigens.
Fisher (1985) did not identify Triadispora verrucata in any of his samples from ‘Mudstone I.
He assigned this assemblage to the latest Ladinian (Longobardian)-early Carnian
(Cordevolian) based on correlation to the assemblages from the Meridenkalken (Scheuring
1978). The preliminary magnetostratigraphy of the MMG (Hounslow et al. 2002) suggests
that the Ladinian/Carnian boundary may be placed in the upper part of the SMF. However,
characteristic Ladinian taxa from the Germanic Basins such as Heliosaccus dimorphus or
Echinitosporites iliacoides (Kiirschner & Herngreen 2010) are absent in "Mudstone I" of
Fisher (1985) and in the upper part of the SMF in our study.Hence, the co-occurrence of
Triadispora verrucata with other characteristic Carnian taxa e.g., C. secatus, Partitisporites
spp., V.ignacii, A. astigmosus within the palynoflora from the SMF suggest an early Julian
age (Ortowska-Zwolinska 1983, 1985; Heunisch 1999; Kiirschner & Herngreen 2010;
Fijatkowska-Mader et al. 2015). Therefore the Ladinian/Carnian boundary is located lower
than the investigated interval according to the palynological results.

Aulisporites astigmosus 1s a characteristic component of Julian assemblages in the western
Tethys (e.g., Roghi ef al. 2010), as well as in the Schilfsandstein (Visscher et al. 1994). An
acme of the species is recorded in several late Julian successions in the Dolomites, Julian Alps
and Northern Calcareous Alps (Roghi 2004; Roghi ef al. 2010). Mueller et al. (2016b) found
an increase in A. astigmosus only in the Rheingraben Shales of mid Julian age. In the British
successions, the species has been recorded only in the Sidmouth Mudstone Formation
represented by a few specimens and one poorly preserved specimen was found in the DMF
(WP-1, sample 71.41 m, Fig. 6). The Aulisporites acme is often associated with the presence
of other Cycadophyte related pollen grains such as Cycadopites spp. and lycopsid spores of
the Aratrisporites group (Roghi et al. 2010). A palynoflora with similar composition to that is

absent in the British successions. In the WP-1 core Cycadopites is extremely rare, and in the
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Strangman’s Cove coastal outcrop only a few specimens of Cycadopites sp. are recorded in
the interval from sample WEO17 in the Lincombe Member, to sample WE214 in the upper
part of the DMF (Figs 2 and 6). This interval might reflect an expression of the Aulisporites
assemblage however, the British successions appear to completely lack an acme of
Aulisporites astigmosus as seen in the western Tethys or in the Schilfsandstein.

The previous study of Fisher (1985) distinguished two palynological assemblages in the DMF
in the South Devon Coast: an older and younger palynomorph assemblage with the boundary
between the two placed within the Lincombe Member (Fisher 1985; Gallois & Porter 2006).
The assemblages were informally termed the “Dunscombe cycle” and “Weston cycle”. These
“cycles” most likely correspond to the Assemblages I and II from the Strangman’s Cove
coastal outcrop respectively. The composition of the “Dunscombe cycle” is similar to the
Assemblage I from the Strangman’s Cove (Fig. 2), with a high volume of bisaccate pollen
grains, Praecirculina granifer, Enzonalasporits vigens, Ovalipollis ovalis,
Ellipsovelatisporites plicatus and Triadispora spp. Fisher (1985) correlated the older
“Dunscombe cycle” to the palynological assemblages of the Gipskeuper and Zones D-E of
Scheuring (1970) from the Keuper in Switzerland based on the restricted occurrence of
Protodiploxypinus gracilis and Triadispora plicata in this assemblage and suggested an early
Carnian (“Cordevolian” age, now considered early Julian). The “Weston cycle” of Fisher
(1985) has a similar palynological composition to Assemblage II in the upper part of the DMF
in our study, characterized by an increase in Camerosporites secatus and the restricted
occurrence of Patinasporites densus. Fisher (1985) correlated the “Weston cycle” to the upper
part of the Gipskeuper and the Schilfsandstein (Zones F-G of Scheuring 1970) and suggested
a Julian-Tuvalian age. The local first occurrence (FO) of Patinasporites densus is recorded in
the upper part of the WP-1 (at 56.51 m). In the Strangmans’s Cove section, the species is

present from ca. 20 m above the base of the section (sample WEO17, Fig. 2). Patinasporites
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densus and Partitisporites maljawkinae are characteristic for the densus—maljawkinae phase
of Van der Eem (1983) (Fig. 5) characteristic for the late Julian in the Dolomites. As the last
local occurrence of Partitisporites novimundanus is recorded in the upper part of the DMF at
Strangman’s Cove (Figs 3 and 6), the uppermost studied part of the DMF is most likely still
Julian according to the recent palynological zonation for NW and central Europe (Kiirschner
& Herngreen 2010). Characteristic Tuvalian taxa e.g., Ricciisporites or Classopollis spp. are
absent in the studied part of the DMF.

The assemblage from the Branscombe Mudstone Fm is characterized by the presence of
Porcellispora longdonensis, Calamospora tener, Partitisporites quadruplices and Brodispora
striata is more common compared to the single occurrence of the species in the DMF
(Strangman's Cove, sample WEI111). Brodispora striata is a characteristic element of the
Arden Sandstone Formation of the English Midlands (Clarke 1965) (e.g., Warrington 1970,
Warrington et al. 1980; Fisher 1985; Barclay et al. 1997). This formation has been assigned to
the Tuvalian substage based on the palynological assemblage with Duplicisporites spp.,
Camerosporites secatus, Haberkornia gudati, Vallasporites ignacii, Ovalipollis pseudoalatus,
Ellipsovelatisporites plicatus, Ricciisporites umbonatus, Patinasporites densus and
Brodispora striata (Clarke 1965; Warrington 1970a; Warrington et al. 1980; Barclay et al.
1997) although many of these taxa are not confined to the Tuvalian (Cirilli 2010; Kiirschner
& Herngreen 2010). In the Alpine Realm, B. striata has been recorded from the Opponitz
Formation in the Lunz am See area in Austria (Dunay & Fisher 1978) dated to the uppermost
Carnian Tropites subbulatus ammonoid Zone suggesting Tuvalian age (Fig. 5). The species
Fartitisporites quadruplices characterizes the Tuvalian in the western Tethys (Visscher &
Krystyn 1978; Cirilli & Eshet 1991). Brodispora striata and P. quadruplices are found
together in the Carnitza Formation and Travenanzes Formation in the Dolomites (Roghi

2004), which based on ammonoids is Tuvalian in age (De Zanche et al. 2000). According to
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the national rationalisation of the Mercia Mudstone Group lithostratigraphy by Howard et al.
(2008), the DMF includes the equivalent of the Arden Sandstone Formation of the English
Midlands there considered to be Tuvalian in age. Our palynological data and the results of
Fisher (1985) from the DMF are inconsistent with a Tuvalian age assignment. The studied
part of the DMF on the South Devon Coast being Julian in age, with Tuvalian assemblages
confined to the overlying Branscombe Mudstone Formation in the upper part of the
Strangman’s Cove section. The Julian/Tuvalian boundary might be placed in the uppermost
part of the DMF or the lowermost part of the Branscombe Mudstone which has not been

investigated in this study.

Correlation of the sandstone units from Somerset and the English Midlands

Based on lithostratigraphy and log correlations Howard et al. (2008) suggested that the North
Curry Sandstones from Somerset are equivalent to the Lincombe Member of the Devon coast
and also the Arden Sandstone Formation in the English Midlands. Brodispora striata and
Ricciisporites are frequent elements of the Arden Sandstone Formation (Warrington et al.
1980). Brodispora is common only in the Branscombe Mudstone Formation on the Devon
coast and Ricciisporites was only recorded at Sutton Mallett, in Somerset. The palynological
assemblages at Lipe Hill are comparable with Assemblage I at Strangman’s Cove and the
“Dunscombe cycle” of Fisher (1985) from the coast, based on the high amount of Triadispora
spp. especially T. obscura, Ovalipollis spp., Praecirculina granifer, Duplicisporites
granulatus. Tthe assemblages at Lipe Hill suggests Julian (probably late Julian) age but it
cannot be defined more precisely based on the palynological assemblages only.

The assemblage at the Sutton Mallet section is younger, based on the presence of
Ricciisporites tuberculatus in sample SM 2, indicating the Tuvalian. In the Alpine realm this

species appears first in the Travenanzes Formation in the Dolomites and in the Carnitza
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Formation in the Julian Alps in the Tropites dilleri Zone of the Tuvalian (Fig. 5) (Roghi 2004;

Roghi et al. 2010).

Chemostratigraphy and correlation

In marine successions, 513 Ccarp shows an overall rise of 3%o in the earliest Carnian

(813 Ccars; +1 %o— +3 %o compared to V-PDB) with a small negative excursion near the
Ladinian-Carnian boundary (-1 %o) (Korte et al. 2005) and a sharp negative excursion at the
early-late Julian boundary both in carbonate carbon and organic carbon (Korte et al. 2005;
Muttoni et al. 2014; Mueller et al. 20164, b).

The correlation of the negative carbon isotope excursion at the Ladinian-Carnian boundary
and the IIE excursion in the WP-1 core is unlikely since palynological evidence does not
suggests a Ladinian age for the lowermost part of the DMF or topmost part of the Sidmouth
Mudstone Fm. The correlation of the IIE excursion in the WP-1 core to the early-late Julian
boundary excursion seems to be more plausible and it can be matched to the Julian 1/2 zonal
boundary excursion in the Alpine areas (Dal Corso et al. 2012, 2015). The lithostratigraphical
and palynological correlation between the Strangmans’ Cove section and WP-1 core (Gallois
& Porter 2006) is supported by 8" Croc wiggle matching in Fig. 6. The third isotope
excursion (CIE-3) in WP-1 can be matched with the excursion in sample WEOQ15 in the
coastal outcrop. This excursion is located at the base of the Lincombe Member, just below
calcareous marker bed C (Gallois 2007; Gallois & Porter 2008) at Strangman’s Cove (Fig. 6).
The correlation of this interval between the core and the outcrop is supported by the local first
appearance date of Patinasporites densus. CIE-4 is located in both sections at calcareous
marker bed G (Fig. 6). CIE-5 is just above bed I (Fig. 6) at Strangman’s Cove which
correlates to the interval between 51 m and 52 m in WP-1 (Gallois & Porter 2006) with the

fifth negative carbon isotope excursion (Fig. 6). CIE-2 is located at calcareous marker bed A
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and the IIE is few metres above the base of the DMF in both sections (Fig. 6). However, the
latter two excursions cannot be precisely matched.

As the bulk organic matter analysed for its 8C composition comprises not only the
particulate organic matter and palynomorphs identified here but includes the whole
sedimentary organic matter (kerogen), it is not straightforward to directly compare the
palynological/palynofacies data with the bulk carbon isotope data. The bulk 8"*Croc values
are more negative in the Strangman’s Cove outcrop than in the Wiscombe Park core. These
differences may be due to variations in the composition of the organic matter, indeed TOC
values, although generally low, do differ between the core and the outcrop (Fig. 6).
Unfortunately, Rock-Eval data which may help to quantify the composition of the total
sedimentary organic matter are not available.

Multiple carbon source contributes to and thus complicate the interpretation of the bulk
organic 8"°C signal. Fluctuations in bulk organic 8"°C can be associated with both changes in
lithology and changes in environmental conditions (Pancost et al. 1999). Major factors
controlling bulk organic 8'°C values include variations in the composition of the organic
matter (i.e. aquatic vs. terrestrial) and the carbon isotopic composition of atmospheric CO,
during inorganic carbon uptake by plants (e.g. Diefendorf & Freimuth, 2017). Compound
specific carbon isotope analysis of plant leaf waxes (n-alkanes) can help resolve the multiple
isotopic signals that contribute to the bulk organic carbon 81C signal. Miller et al. (2017)
suggest that the negative carbon isotope excursions recorded simultaneously in both WP-1
8"*Croc and in plant leaf waxes (n-alkanes) represent an injection of light carbon into the
atmosphere, resulting in significant global perturbations of the carbon cycle. The good
correlation between WP-1 and Strangman’s Cove 8"Croc may suggest that changes in
8"Croc at Strangman’s Cove are also likely a result of changes in the carbon isotopic

composition of atmospheric CO, and not fully related to changes in organic matter source.
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Nevertheless, climate change often results in vegetation shifts. The amount of carbon isotope
fractionation, is heavily controlled by the plant’s photosynthetic pathway, which varies
depending on plant type (e.g. Diefendorf & Freimuth, 2017; Collister et al. 1994). The
negative carbon isotope excursions at Strangman's Cove (CIE-3, -4 and -5) coincide with
higher bisaccate pollen and spore abundances (Supplementary Data), although there is no
statistically significant correlation with any of the individual palynomorph groups (R* below
0.5 for each palynomorph group, see Supplementary Data, Fig. S2). Therefore, we suggest
that the observed shifts in bulk carbon isotopes may also be the result of changes in vegetation
as well as shifts in the C isotopic composition of atmospheric CO,. Moreover, precipitation
amount (humidity) is a strong factor governing plant carbon isotopic fractionation. Except for
in extremely wet environments, the §13C of C; plants tends to decrease with increasing rainfall
(e.g. Kohn 2010). Thus, the increased humidity experienced during the CPE may have also
contributed to the observed negative C isotope excursions.

Climatic and palaeoenvironmental implications

In the Southern Permian Basin and western Tethys marine sections, hygrophyte pteridophytic
spores and pollen grains with hygrophyte affinity (e.g., Aulisporites astigmosus) arose in
abundance during the Julian (Roghi et al. 2010) (Table S2). However, the pollen record across
the Dunscombe Mudstone Fm shows the predominance of xerophyte-related land vegetation
during this interval (Figs. 2—4, Figs 7-8, Table S1. Despite the shift in climate, evident from
the lithological change into the base of the Dunscombe Mudstone Fm: Porter & Gallois,
2008), a clear humid climate signal is missing from the palynological record. There are two
different ways to interpret the lack of a clear humid climate signal. Firstly, during the Late
Triassic NW Europe was at ca. 30°N in the continental interior of Pangaea within the dry
climate belt with low annual precipitation (Fig. 1), likely falling during the Northern

Hemisphere-summer period when the main rainfall zone with the ITCZ migrated to the north
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(Kutzbach & Gallimore 1989; Parrish 1993; Ziegler et al. 1994; Sellwood & Valdes 2006;
Vollmer et al. 2008). Hence, in the Wessex Basin, the lack of an expected increase in
hygrophyte floral elements e.g., ferns or the Bennettitalean parent plant of Aulisporites
(Williamsonianthus keuperianus) (Krdusel & Saarschmidt 1966; Balme 1995) might be
related to this strongly seasonal precipitation, which during the dry season may have
prohibited the development of a permanent extensive wetland vegetation and the preservation
of spores and pollen grains. Also, the regional palaeogeography and topography of the studied
area such as subdued upland surrounding a low-relief interior basin (Talbot et al 1994) may
have caused isolation from other basins and the development of a locally more arid climate
than in other region of the Germanic Triassic, even during the CPE. Aulisporites astigmosus
seems to be extremely rare in the British Carnian palynological assemblages, as it has not
been identified in most palynological studies (e.g., Warrington 1970, 1971; Fisher 1972;
Warrington 1974, 1984; Warrington & Williams 1984; Fisher 1985; Warrington 1997, 2004).
Even though the species is present in some coeval sections of the UK (pers. comm. with G.
Warrington 2017), the parent plants might have formed only minor part of the vegetation.
Although the acme of A. astigmosus is recognized in different depositional settings and at
different palaeolatitudes there are locations across Europe, like the UK, where it is absent in
the Carnian palynological assemblages.The A. astigmosus acme has not been recorded in the
Carnian Manuel Formation from Spain (Arche & Lopez-Goémez 2014) (Table S2) and
Lindstrom et al. (2017) do not record any well expressed hygrophyte palynological
assemblages from the mid— to late Carnian assemblages of the Danish Basin which may
suggest that these areas were probably too dry even during the CPE.

Secondly, if the parent plants of Aulisporites and other humidity indicators (ferns) were
present in the Wessex Basin, the balance between local and regional vegetation elements in

the palynological record could have masked a real humid signal. Pollen and spores come from
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both local and regional sources, and catchments of different sizes can represent vegetation at
different spatial scales (Berglund 1973; Jacobson & Bradshaw 1981; Hicks & Hyvérinen
1999). In modern lacustrine settings, the contribution of regional pollen increases with larger
lake size or catchment area (Jacobson & Bradshaw 1981), which can lead to the
underrepresentation of local hygrophyte vegetation growing on the shoreline. This principle,
when applied to the Late Triassic vegetation elements of the UK, suggests the regional pollen
rain is probably associated with the xerophyte pollen group originating from conifers and
upland seed ferns (monosaccates, bisaccates, Circumpolles), while the local and extra local
elements were likely the hygrophyte lowland and riparian elements including Aulisporites
astigmosus (Table S1), fern- and lycopsid spores.

Such differences between the contribution of local and regional pollen rain has already been
discussed by Visscher ef al. (1994) in the case of the Schilfsandstein. They considered the
Aulisporites-acme as only a local signal and rejected the possibility of a European-wide
humid climatic phase, as the regional pollen was likely characterized by xerophyte pollen
during the whole Julian. In contrast to the mainly lacustrine DMF, the Schilfsandstein in
Germany is considered a predominantly fluvial-deltaic deposit (Shukla et al. 2010; Franz et
al. 2014). The local wet spots on the floodplain probably collected more material from the
local and extra local pollen rain resulting in hygrophyte palynological assemblages enriched
in Aulisporites astigmosus and spores.

The Schilfsandstein depositional system probably provided a more favourable habitat for the
parent plant of Aulisporites (Bennettitalean) which grew in warm and often in deltaic settings
(Van Konijnenburg-Van Cittert & Van der Burgh 1989; Vakhrameev 1991).

The Lincombe Member in Devon represents a geographically restricted freshwater lake
(Porter & Gallois 2008). If this lake was of considerable size (>1km), according to the pollen

catchment model of Jacobson & Bradshaw (1981) the size of the lake might explain the

27



645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

predominance of the regional pollen rain of xerophyte vegetation and the lack of local and
extra local pollen rain including spores and pollen from hygrophyte vegetation (e.g.,
Aulisporites) (Fig. 7).Within the Sidmouth Mudstone and Branscombe Mudstone formations
, the samples with high spore abundance come from cm-thick greenish-grey intervals within
between thicker red mudstone units (Fig. 2). These intervals likely represent spatially
restricted locally wet environments with higher representation of extra local and local pollen
and spores (Fig. 7). The sandstone units in Somerset contain more spores suggesting a more
local source for the palynomorphs, but the Aulisporites acme is still absent.

The taphonomic bias between local and regional pollen is further exacerbated by the higher
pollen production rates of wind-blown pollen from the hinterland (e.g., conifers) compared to
insect-pollinated palynomorph types such as Cycadales pollen, Cycadopites sp., A.
astigmosus (e.g., Fegri & van der Pijl 1966).

The relatively wetter periods during the CPE should have supported the expansion of the
hygrophyte vegetation living proximal to a lake. However, the proposed enhanced seasonal
runoff associated with the CPE could have transported more regional pollen types to the
lacustrine depositional setting of the DMF, leading to the underrepresentation of the more
proximal local and extra local vegetation elements e.g., ferns or Bennettitales. A similar
scenario was suggested by Bonis et al. (2010) from the Triassic/Jurassic boundary
palynological assemblages of St. Audrie’s Bay (Somerset, UK) where the intensification of
seasonal monsoonswas connected to the increase in hinterland Cheirolepidiaceae pollen and
lower spore abundance.

Climate change reflected by the hinterland vegetation (regional pollen) might provide new
criteria for tracking climate change during the CPE. However, interpreting the ecological
signal of the regional hinterland pollen types is difficult due to the uncertainty in parent plants

and in the uncertain assignment of dispersed pollen grains into the hygrophyte or xerophyte
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groups. Alisporites species were most likely produced by seed ferns and although the parent
plant is uncertain, with some placing them in transitional and/or hygrophyte groups (e.g.,
Visscher & Van der Zwan, 1981; Whiteside et al. 2015; Lindstrom et al. 2016; Mueller et al.
2016a, b). The increase in the total Alisporites and total spore abundance in the lower part of
the DMF in the Strangman’s Cove section coincides with a peak in freshwater algae (P.
mosellanum) in the Lincombe Member (Fig. 8). This increase in algae suggests expansion of
the lacustrine facies (i.e. the Lincombe Member), hence can be linked to a climatic interval
with a relatively wetter season (Fig. 8), which is also supported by the increase in abundance
of Alisporites.

Acritarchs in Somerset

Marine microplankton are known from some other Late Triassic mudstone units in the
Cheshire Basin and the Midlands (Earp & Taylor 1986; Wilson & Evans 1990; Warrington &
Ivimey-Cook 1992; Barclay et al. 1997) indicating possible marine influence, but with limited
additional evidence for a marine incursions in the MMG depositional basins. The existence of
halites in the MMG has always been contentious, with purely marine, sabkha and wind-blown
origins considered (Hounslow & Ruffell 2006). Fauna from the Arden Sandstone Formation
in the Worcester Graben includes possible marine bivalves Nucula?, Thracia? and
Pholadomya? and shark teeth (Old et al. 1991), indicating possible marine connection.
However, the frequent occurrence of colonial freshwater algae (P. moesellanum) in the
Lincombe Member (South Devon) and in Somerset suggests freshwater conditions during the
deposition of this lithological unit. The acritarchs are simple acanthomorph acritarchs
(Michrystridium) with no significant stratigraphical value and could easily be reworked
Palaeozoic forms. The acritarchs could be reworked and transported to the lakes during
periodic flash floods. The source of the reworked palynomorphs ist likely Carboniferous or

Devonian sediments 50-80 km to the west and north-west (Porter & Gallois, 2008). In
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addition as Hounslow & Ruffell (2006) conclude, the marine microplankton may also have
arrived in far-travelled aeolian dust, in part sourced from marine aerosols, as occurs in

modern desert settings (Glennie & Evans 1976).

Conclusions

The Carnian Pluvial Episode during late Julian to early Tuvalian in the western Tethys is
considered to be the one of the most pronounced climate change during the Triassic
associated with higher precipitation rates and carbon cycle perturbation. The shift to relatively
more humid conditions is manifested in the expansion of hygrophyte vegetation in many
locations worldwide (Roghi et al. 2010). The palynological assemblages from four localities
in the Wessex Basin, SW UK have been shown to track vegetation changes and palaeoclimate
trends during the Carnian from a fluvio-lacustrine environment and in addition provide a
palynostratigraphical framework for correlation.

The Dunscombe Mudstone Formation in South Devon and the Lipe Hill succession from
Somerset contain a Julian (early Carnian) palynoflora, while the assemblage from the
overlying Branscombe Mudstone Formation is likely Tuvalian (late Carnian) based on the co-
occurrence of Brodispora striata and Partitisporites quadruplices. The presence of
Ricciisporites tuberculatus also indicates a Tuvalian age for the Sutton Mallett section in
Somerset. Based on the palynological assemblages and the chemostratigraphy, the
stratigraphical range of the Dunscombe Mudstone Formation can be extended down into the
Julian in contrast to previous Tuvalian age assignments of the Arden Sandstone Fm (Clarke
1965; Warrington 1970; Warrington et al. 1980; Barclay et al. 1997). A humidity signal
associated with the CPE is not seen in the Wessex Basin successions where quantitative
palynology suggests the dominance of xerophyte floral elements through the Dunscombe

Mudstone Formation with only a few horizons of increased hygrophyte flora. The British
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successions appear to lack an acme of Aulisporites astigmosus which has been linked to the
shift to wetter climate as seen in the western Tethys or in the Germanic Basin. Firstly, the
prevailing dry climatic conditions in the inner part of Pangea and the strong seasonality in
precipitation might explain the lack of suitable permanent habitat for the hygrophyte
vegetation. Secondly, the lack of a clear humid signal is likely caused by overrepresentation
of the regional pollen rain in the lacustrine units leading to the predominance of xerophyte
hinterland floral elements. The bias towards regional pollen rain is further enhanced by the
higher pollen production rate of hinterland elements- mainly the conifers. In addition, the
potential increase in continental runoff related to more humid conditions might have further
increased the proportion of the regional hinterland floral elements in the palynological
assemblages. Changes in the regional flora might provide a tool for recording climate change.
A slight shift to wetter climate is inferred from increased Alisporites abundance in the
hinterland flora that coincides with increase of fresh water algae suggesting the expansion of

local lacustrine environments during a relatively wetter period.
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Figure captions

Fig. 1. (a) Map of the UK and Ireland showing the position of the study area, (b)
palaeogeography during the Late Triassic after Golonka (2007), the asterisk marks the
position of the study area, (¢) Mercia Mudstone lithostratigraphy of south-west England from
Howard et al. (2008), names shown in italics are abandoned in the revised nomenclature, (d,
e) outline geology maps and location of the four studied outcrops and the Wiscombe Park-1

Borehole, modified after Gallois & Porter (2006) and Porter & Gallois, (2008).

Fig. 2. Lithostratigraphy, sample positions and the relative pollen-spore abundances during
the Carnian in the Wiscombe Park-1 core and in the Strangman’s Cove outcrop section,
Devon. Lithological log modified from Gallois (2007) and Gallois & Porter (2006). The
stratigraphical subdivision is inferred from palynology and chemostratigraphy. The boundary
between substages is indicated by a dashed line due to the uncertainty of the boundary
position. Only the most abundant taxa are shown. The grey area of the curves is an
exaggeration (3X) of the abundances plotted in black. The unidentified palynomorphs and
encountered Lycopodium grains are shown as counts. A detailed lithological log with the

exact position of the palynological samples is available in the Supplementary Data (Fig. S1).

Fig. 3. Lithostratigraphy, sample positions and the relative pollen-spore abundances during
the Carnian in the Lipe Hill and Sutton Mallett sections, Somerset. Lithological log is

modified after Ruffell & Warrington (1988). See Fig. 2 for details.

Fig. 4. Selected palynomorphs identified from the Mercia Mudstone Group. Taxon name is
followed by lithostratigraphic unit and locality. Sample and slide numbers are in parentheses.

Scale bar 10 um: 1-13, 16-37. Scale bar 20 um: 13-16. 1 Brodispora striata, Branscombe
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Mudstone Formation, Strangman’s Cove (WE203/A). 2 Porcellispora longdonensis,
Branscombe Mudstone Formation, Strangman's Cove (WE203/A). 3 Thomsonisporis toralis,
Sidmouth Mudstone Formation, WP-1 (109.11 m/1). 4 Calamospora tener, Sidmouth
Mudstone Formation, WP-1 (111.98 m/1). 5 Kyrtomisporis sp., Sidmouth Mudstone
Formation, WP-1 (111.98 m/1), 6 Aratrisporites sp., Sidmouth Mudstone Formation, WP-1
(111.98 m/1). 7 Aratrisporites fimbriatus, Sidmouth Mudstone Formation, WP-1 (111.98
m/1). 8 Cycadopites sp., Sidmouth Mudstone Formation, WP-1 (111.98 m/1). 9
Lunatisporites acutus, Dunscombe Mudstone Formation, Lipe Hill (LH 2/2). 10 Aulisporites
astigmosus, Sidmouth Mudstone Formation, WP-1 (111.98 m/1). 11 cf. Aulisporites
astigmosus, Sidmouth Mudstone Formation, WP-1 (109.11 m/1). 12 Brachysaccus
neomundanus, Dunscombe Mudstone Formation, Strangman's Cove (WE017/A). 13
Ovalipollis lunzenis, Branscombe Mudstone Formation, Strangman's Cove (WE203/A). 14
Alisporites grauvogeli, Dunscombe Mudstone Formation, WP-1 (57.86 m/1). 15 Ovalipollis
ovalis, Dunscombe Mudstone Formation, Strangman's Cove (WE305/B). 16 Triadispora
aurea, Sidmouth Mudstone Formation, WP-1 (111.98 m/1). 17 Triadispora plicata,
Dunscombe Mudstone Formation, Lipe Hill (LH 2/2). 18 Triadispora verrucata, Sidmouth
Mudstone Formation, WP-1 (111.98 m/1). 19 Triadispora obscura, Sidmouth Mudstone
Formation, WP-1 (111.98 m/1). 20 Duplicisporites granulatus, Dunscombe Mudstone
Formation, Strangman’s Cove (WEO003/A). 21 Patinasporites densus, Branscombe Mudstone
Formation, Strangman’s Cove (WE203/A). 22 Triadispora crassa, Sidmouth Mudstone
Formation, WP-1 (111.98 m/2). 23 Triadispora modesta, Sidmouth Mudstone Formation,
WP-1 (111.98 m/1). 24 Partitisporites novimundanus, Dunscombe Mudstone Formation,
Strangman's Cove (WE003/A). 25 Praecirculina granifer, Dunscombe Mudstone Formation,
Strangman's Cove (WEO001/A). 26 Camerosporites secatus, Dunscombe Mudstone

Formation, Sutton Mallett (SM 2/1). 27 Duplicisporites mancus, Branscombe Mudstone
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Formation, Strangman’s Cove (WE203/A). 28 Partitisporites scurrilis, Dunscombe Mudstone
Formation, Strangman's Cove (WE103/A). 29 Partitisporites tenebrosus?, Branscombe
Mudstone Formation, Strangman's Cove (WE203/A). 30 Partitisporites maljawkinae,
Dunscombe Mudstone Formation, Strangman's Cove (WE302/A). 31 Partitisporites
quadruplices, Branscombe Mudstone Formation, Strangman™s Cove (WE203/B). 32
Ricciisporites tuberculatus, Dunscombe Mudstone Formation, Sutton Mallett (SM 2/1). 33
Plaesiodictyon mosellanum, Dunscombe Mudstone Formation, Strangman's Cove
(WEO17/A). 34 acritarch indet., Dunscombe Mudstone Formation, Lipe Hill (LH 2/2). 35
acritarch indet same as 34 with different focus, Dunscombe Mudstone Formation, Lipe Hill
(LH 2/2). 36 Micrhystridium sp., Dunscombe Mudstone Formation, Lipe Hill (LH 5/1). 37

Botryococcus braunii, Dunscombe Mudstone Formation, Strangman's Cove (WEQ18/A).

Fig. 5. Chrono-, bio- and palynostratigraphical schemes for the Germanic Keuper, Alpine,
Boreal and North America during the Carnian-Norian. Tethys ammonoid zones are from
Mietto et al. (2008) and Balini et al (2010). I Kiirschner & Herngreen (2010); I Heunisch
(1999); III Ortowska-Zwolinska (1983, 1985); Fijatkowska-Mader et al. (2015); IV Roghi
2004; V Roghi et al. (2010), VI Van der Eem (1983); VII Van Veen 1985; VIII Vigran et al.
2014; IX Cornet 1977; X Litwin et al. (1991). Volcanic events from Dal Corso et al. (2012)
and Moix et al. (2008, 2013). The characteristic spore-pollen events refer to the first and last
occurrences of selected palynomorphs in the Southern Permian Basin mainly Germany and

Poland as summarized in Kiirschner & Herngreen (2010).

Fig. 6. Correlation of the Wiscombe Park-1 core and the Strangman’s Cove section with
813CTOC bulk isotope values, calcareous marker horizons (Gallois & Porter 2006) and the

range of the key biostratigraphically important pollen taxa. Horizons with increased
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hygrophyte vegetation elements are indicated. Black diamond symbols mark the samples
included in the palynological analysis. The boundary between substages is indicated by a
dashed line due to the uncertainty of the boundary position. The grey area is the correlation
suggested by Gallois & Porter (2006) based on the lithology. Detailed lithological log of the
Strangman’s Cove section with the palynological sample locations is in the Supplementary
Data (Fig. S1). SMF = Sidmouth Mudstone Formation, Jul. = Julian. Tuv. = Tuvalian. BMF =

Branscombe Mudstone Formation.

Fig. 7. Conceptual model of the relationship between sampling size (lake diameter) and the
relative proportion of pollen grains originating from different habitats around inferred lake
deposits of the DMF as applied to Late Triassic palynomorph types. Modified after Jacobson

& Bradshaw (1981).

Fig. 8. Stratigraphy, lithostratigraphy and climatic interpretation of selected palynomorph
groups in the Strangman’s Cove section. The boundary between substages is indicated by a
dashed line due to the uncertainty of the boundary position. For the position of the
palynological samples see Fig. 3. Detailed log with the position of the palynological samples
is available in the Supplementary Data (Fig. S1). The total abundance of spores, Alisporites
spp., algae and interpreted negative isotope excursions are indicated. BMF= Branscombe

Mudstone Fm.
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Strangman’s Cove outcrop
Modified from Gallois & Porter (2006)
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Fig. S1. Detailed lithological log the Strangman’s Cove section with the exact position of the
palynological samples and its correlation (Gallois & Porter 2006) to the WP-1 borehole core.
DMF = Dunscombe Mudstone Formation, BMF = Branscombe Mudstone Formation.



Detailed description of the Mercia Mudstone Group lithostratigraphic
units in the Wessex Basin

Sidmouth Mudstone Formation

The formation was originally defined by Gallois (2001) and later adapted to the national re-
assessment by Howard et al. (2008). The type section is in the South Devon coast between
Sidmouth [SY 129 873] and Weston Mouth [SY 163 879]. Its base is defined at the top of the
Pennington Point Mbr of the underlying Otter Sandstone Fm (Gallois, 2004) in the same
section, and in south Devon it has been divided into five members (Gallois, 2001, 2004). At
the type section the formation consists predominantly of massive red-brown mudstone and
siltstone with common grey-green reduction patches and spots. The mudstones are mostly
structureless, with a blocky weathering habit. Units consisting of thin beds of grey-green
dolomitic siltstone and very fine-grained sandstone, interbedded with mudstone, occur at
intervals throughout the formation. In the type section, Gallois (2007) indicates the “Sidmouth
Mudstone comprises c. 180 m of relatively uniform red-brown mudstones and orange-brown
muddy siltstones in stacked sequences of small-scale rhythms, 0.5 to 1.5 m thick, in which
fissile-weathering, brownish red, silty mudstones pass up into reddish orange, muddy
siltstones”. Gypsum and/or anhydrite also occur predominantly in the upper part of the
formation as nodules and veins. Caliche nodules occur in the lowest member of the formation.
Age is probably latest Anisian or earliest Ladinian at its base (Hounslow & Mclintosh, 2003)
through Ladinian to probably Carnian in its upper parts (this paper). It is devoid of
macrofossils.

Arden Sandstone Formation

Howard et al. (2008) define this formation, with a type section in the Canal cutting [SP 2118
6744] at Shrewley in Warwickshire (Old et al., 1991). Howard et al. (2008) describe the
lithology of the formation as “consisting of grey, green and purple mudstone interbedded with
paler grey-green to buffcoloured siltstone and fine to medium-grained, varicoloured (green,
brown, buff, mauve) sandstone; thin pebble beds occur locally. Laminated and thinly
interbedded sediments are commonly extensively bioturbated and show structures indicative
of thixotropic deformation. Invertebrate and vertebrate macrofossils are present, locally in
abundance, and miospores and burrows are common. The siltstones and finer sandstones
show small-scale ripple drift cross-bedding; thicker sandstone beds show trough and planar
crossbedding. The proportion of fine to coarse clastics varies laterally within the formation.
The thicker sandstone units, composed of several individual beds, have a lenticular geometry
and occupy the inferred former courses of distributary channels in a deltaic or estuarine
environment. The formation is differentiated from the reddish brown, blocky weathering
mudstones of adjacent formations by its predominantly greenish grey colour, the presence of
a significant (though commonly subordinate) proportion of sandstone, the predominance of
finely laminated lithologies throughout, and its comparatively fossiliferous nature.” The base
of the formation is placed at the change from underlying red mudstone to non-red units, and
on the South Devon coast may be at the breccia (Howard et al. 2008) at around sample
WEOQ08 in Fig. S1 (50 cm below bed A), and ca. 71m in the Wiscombe Park Borehole. Its
thickness is 7-8 m in the midlands and upto 24 m thick in S. Devon. On palynological
evidence, primarily from the Midlands, its age is late Carnian. It contains a variety of rather
poorly documented macrofossils (Old et al., 1991; Barclay et al., 1997).



Dunscombe Mudstone Formation

The formation was defined by Gallois (2001) and later slightly revised by Gallois & Porter
(2006), with a type section at the series of cliff faces below Weston Cliff (SY 168 880 to 171
880; Gallois & Porter, 2006). There the formation consists of 38 m to 43 m of interbedded and
interlaminated green, purple, red and grey mudstones, mudstone breccias, silty dolomitic
limestones, siltstones and fine-grained sandstones. The dolomitic beds form prominent, pale
weathering markers in the cliffs. The breccias and dark grey mudstones, can give rise to water
seepage lines in the cliff outcrops. At the type section the formation can be divided in three
divisions, following Jeans (1978), a ‘lower calcareous group’ (containing beds informal A and
B; Fig. s1), and ‘middle sandstone group’ containing beds C to E, and an ‘upper calcareous
group’ containing beds F to N (Gallois & Porter, 2006; Fig. s1).

In the Wiscombe Park boreholes the base of the formation is at the base of a partially
dolomitised breccia (at 71 m; Gallois, 2007) which marks a lithological change from the
predominantly red-brown mudstone of the Sidmouth Mudstone Formation to interbedded
green and purple mudstones with thin dolomitic and dark grey mudstones. In the Strangman’s
cove section, Gallois & Porter (2006) used the base of the formation as the first grey
mudstone just below sample position WEQ03 (Fig. s1), and the upper boundary at the top of
bed N (location of WEZ205).

Lenticular beds of siltstone and fine-grained calcareous sandstone are present throughout, but
dominate in the middle division of the Dunscombe Mudstone Formation. These calcareous or
sandy beds (designates as A-N, Fig. S1) form prominent pale weathering marker beds in the
cliff. At outcrops on the Devon coast, the thickest of these units (bed C) has been named the
Lincombe Member (Porter & Gallois 2008) (Fig. S1). In Somerset, lenticular sandstones
similar to the Lincombe Member are recorded in the lower part of the formation between Lipe
Hill and Norton Fitzwarren between Knapp and Stathe and between Moorlinch and Sutton
Mallet (e.g., Ruffell & Warrington 1988; Gallois, 2003), but their age relationship or
correlation to the Lincombe Member is unclear. The mudstone breccias consist of angular
predominantly clasts in a mudstone matrix and were formed by dissolution of
gypsum/anhydrite and halite, with cliff falls revealing residual white gypsum patches within
the breccias. Correlations with boreholes suggest that the breccias probably pass laterally into
thick beds of salt (Gallois, 2003). The formation contains a variety of macrofossils and trace
fossils (Porter and Gallois, 2008). Based on this study the formation is Julian-earliest Tuvalian
in age.

Branscombe Mudstone Formation

The formation was originally defined by Gallois (2001), and later adapted to the national re-
assessment by Howard et al. (2008). The type section is on the Devon coast between Weston
Cliff and Branscombe Mouth [SY 171 879 to 207 881] with higher units at Haven CIiff, east
of Seaton [SY 256 898 to 260 897]). Gallois (2001) divided this into four members in the type
section. The formation predominantly consists of red-brown mudstone and siltstone with a
blocky weathering habit. Fairly frequent green mudstone or green to red fine-grained
sandstone beds (5 mm to 10 cm thick) occur particularly in the upper or mid parts of the
formation (as well as rare black mudstone in mid parts), and a ca. 10 m thick Red Rock
Gypsum Member occurs in the coastal outcrops. In the type section Gallois (2001) and
Gallois & Porter (2006) defined its base at the top of bed N (which we use here), whereas
Howard et al. (2008) revised it down to around the base of bed J.

In south Devon, Somerset and Gloucestershire, the highest 10 to 20 m include common beds
of greenish grey mudstone (Haven Cliff Mudstone Mbr, in south Devon, part of ‘Tea Green



Marls’ further N), giving rise to markedly colour-banded sections were exposed . Based on
this study and magnetostratigraphic data (Hounslow et al. 2004) the age of the formation is
Late Carnian (this study) to around the Norian- Rhaetian boundary (Kent et al. 2017). The
formation is devoid of macrofossils, but contains palynomorphs in its uppermost parts.

Blue Anchor Formation

The type section of the formation is in north Somerset at Blue Anchor cliff [ST 0385 4368],
where it is 36.54 m thick (Warrington and Whittaker, 1984; Howard et al. 2008). The
formation typically consists of rhythmically bedded pale grey to green, dolomitic silty
mudstones, siltstones and argillaceous limestones. At the type section it also contains
extensive thick beds of gypsum, but these are rarely preserved elsewhere unless locally in
boreholes. Often its base is taken as a prominent bed of dolomitic limestone, as in Devon
(Gallois, 2001), although in North Somerset it is taken at the top of the highest occurrence of
a major red mudstone (Warrington and Whittaker, 1984; Hounslow et al. 2004)- the boundary
is likely diachronous and may be erosive (Howard et al. 2008). Based on magnetostratigraphy
its age is from around the Norian-Rhaetian boundary into the early Rhaetian (Kent et al. 2017;
Hounslow & Muttoni, 2010). It contains a fairly restricted macrofauana and diverse
palynology (Hounslow et al. 2004).



Sample locations

In Devon two localities were sampled. A total of 56 samples were taken from a coastal
outcrop at Strangman's Cove (SY 1718 8795, 49°50°48""N, 7°32"33"W) (Fig. 1) and 34
samples were analysed from the Wiscombe Park-1 borehole (WP-1) (SY 1819 9382,
49°51°07°"N, 7°32°30""W) (Fig. 1) borehole. The Wiscombe Park-1 borehole was drilled by
the British Gypsum Ltd in 1972 to a depth of 164.59 m, and the interval between 48.77 m and
164.59 m was continuously cored (Gallois 2007). The core is housed at the British Geological
Survey National Geoscience Data Centre at Keyworth, Nottingham, UK.

In Somerset three localities were sampled: Knapp Quarry (Knapp, North Curry, ST 3050
2536, 51°01°25"°N, 2°59°30"W) (seven samples), Sutton Mallet (north of Bridgwater,
51°07°25"N, 2°53°49"W) (four samples) and Lipe Hill (between Taunton and Wellington,
from ST 1872 2150 to ST 186 215 50°59°13""N, 3°09°36""W) (ten samples) (Fig. 1). The Lipe
Hill exposes one of the successions that formed the basis for the CPE (Ruffell et al, 2015). It
exposes a succession starting with a conglomeratic basal beds followed by fine-grained, cross-
laminated sandstone and grey-dark grey mudstones (Ruffell & Warrington 1988). Knapp
Quarry (Warrington & Williams 1984) comprises of fine-grained, pale grey to cream coloured,
cross-bedded and ripple-drift cross-laminated sandstones interbedded with blue and grey
mudstones (Ruffell & warrington, 1988). At Sutton Mallet 2 m of fine and medium grained
sandstone are interbedded with 5-15 cm blue-grey mudstones. All three sandstones are
channel deposits, each with a basal channel-lag deposit, cutting down into the Sidmouth
Mudstone, unlike the Lincombe Member which is several metres above the base of the
Dunscombe Mudstone Formation.



Laboratory techniques

Palynological processing

Ten to twenty grams of sediment were crushed and in order to calculate palynomorph
concentration, one tablet containing Lycopodium spores was added to each sample at the start
of processing. All samples were treated with 10% HCI to dissolve the carbonate fraction. To
dissolve the silicates, the samples were treated with hot concentrated HF (65°C) in a water
bath for two days. The organic residue was sieved with a 250 pm and a 15 pm mesh. To
separate heavy minerals (e.g., pyrite) from the organic particles, heavy liquid (ZnCl;) was
added to the organic residue between 250 pum and 15 pm. Slides were mounted using epoxy
resin (Entellan) as the mounting medium. Microscopy was carried out with a Zeiss Standard
Trinocular (328883) microscope connected to an AxioCam ERc5s camera and Zen 2011
software.

Organic carbon isotope analysis and TOC

For 8"*Croc analyses, 36 samples from the Strangman’s Cove outcrop were homogenized and
treated sequentially with 0.1M and 1M HCI for 24 hours, before being rinsed to neutrality
with MilliQ water (18.2 MQ cm) and dried at 40°C for 4 days. Each step, involving a change
of reagent or water, was preceded by centrifugation (10 min at 1500 rpm) to prevent the loss
of fine material in suspension. The resulting powders were weighed into tin cups. Samples
were first measured for % TOC using a Fisons NA1500 NCS and then for isotopes using the
Fisons NA1500 NCS coupled with a Thermo Delta plus IR-MS. Ratios were normalised using
the laboratory standard GQ (a powdered Graphite-Quartzite). The precision obtained for
repeat analysis was better than = 0.19%o (15). The analyses were carried out at the GeoLab,
Department of Earth Sciences, at the University of Utrecht.



Table S1. Botanical affinity, proposed habitat and ecological affinity of the identified palynomorphs.

NA= not assigned

Taxa Botanical affinity*  Habitat (SEG)} Type Ecologyt
Anapiculatisporites moss? river/lowland local/extra-local hygrophyte
Aratrisporites spp. lycopsid river local hygrophyte
Calamospora tener Equisetales river local hygrophyte
Carnisporites Filicales river local hygrophyte
Conbaculatisporites Dipteridaceae river local hygrophyte
Concavisporites Matoniaceae river/lowland local/extra-local hygrophyte
Converrucosisporites Dicksoniaceae lowland local/extra-local
Cyclogranisporites/Cyclotriletes Osmundaceae river/lowland local/extra-local hygrophyte
Dictyophyllidites Filicales lowland extra-local hygrophyte
Kraeuselisporites lycopsid river local hygrophyte
Kyrtomisporis fern river/lowland local/extra-local hygrophyte
Lycopodiacidites lycopsids river local hygrophyte
Osmundacidites Osmundaceae river/lowland local/extra-local hygrophyte
Porcellispora longdonensis liverwort river local/extra-local hygrophyte
Rogalskaiasporites Moss? river local hygrophyte
Thomsonisporites toralis NA NA NA hygrophyte
Todisporites Osmundaceae river/lowland local/extra-local hygrophyte
Verrucosisporites Filicales river local hygrophyte
Alisporites spp. seed fern upland/lowland regional/extra-local hygrophyte?
Brachysaccus conifer upland regional xerophyte
Chordasporites conifer/seed fern upland regional xerophyte
Ellipsovelatisporites conifer upland regional xerophyte
Lunatisporites Podocarpaceae upland regional xerophyte
Klausipollenites spp. Voltziales upland regional xerophyte
Microcachrydites Podocarpaceae upland regional xerophyte
Minutosaccus Voltziaceae upland regional xerophyte
Ovalipollis spp. Voltziaceae upland regional xerophyte
Parillinites conifer? upland regional xerophyte
Pityosporites conifer/seed fern upland/lowland xerophyte
Platysaccus Podocarpaceae upland regional xerophyte
Protodiploxypinus conifer/seed fern upland/lowland xerophyte
Sulcatisporites conifer? upland regional xerophyte
Triadispora spp. Voltziaceae upland regional xerophyte
Voltziaceaesporites Voltziaceae upland regional xerophyte
Enzonalasporites Majonicaceae upland regional xerophyte
Patinasporites Majonicaceae upland regional xerophyte
Pseudoenzonalasporites Majonicaceae upland regional xerophyte
Vallasporites Majonicaceae upland regional xerophyte
Aulisporites Bennettitales lowland extra-local hygrophyte
Brodispora striata NA lowland local hygrophyte
Camerosporites Cheirolepidiaceae upland regional xerophyte
Cycadopites Cycadophyte lowland regional hygrophyte
Duplicisporites Cheirolepidiaceae upland regional xerophyte
Lagenella martinii NA river/lowland local hygrophyte
Partitisporites Cheirolepidiaceae upland regional xerophyte
Praecirculina Cheirolepidiaceae upland regional xerophyte

*Botanical affinities from Balme (1995), Roghi (2004), Roghi et al. (2010), Raine et al. (2011), Bonis & Kiirschner (2012),
Fijatkowska-Mader (2015), Lindstrém et al. (2016), Paterson et al. (2016)

tHabitats from Abbink et al. (2004), Kustatscher et al. (2012), Paterson et al. (2016)

}Ecology from Visscher & Van der Zwan (1981), Roghi (2004), Roghi et al. (2010), Fijatkowska-Mader (2015), Mueller et

al. (20164, b), Paterson et al. (2016)



Table 2. Compilation of the sedimentological, palynological and geochemical characteristics of CPE successions across Europe. N.D. No data/not determined

Location

Sedimentology

Palynology

Carbon cycle

Climatic interpretation

References

,»British Keuper”
Mercia Mudstone
Group, Wessex
Basin)

“Schilfsandstein,”
Germany

Iberian Peninsula

Boreal Realm
(Svalbard)

Dolomites
(Western Tethys)

Raibl Group
(Northern
Calcareous Alps)

Lunz area
(Northern
Calcareous Alps)

Transdanubian
Range (NW
Hungary)

Switch from evaporitic playa and
red-bed facies to greenish purple
mudstones and sandstones of an
alluvial-fluvial-lacustrine series
in the late Julian

Switch from evaporitic playa
lakes (Grabfeld Formation) to
fluvial-deltaic sandstones
(Stuttgart Formation)

Switch from evaporitic beds to
coarse grained clastic deposits
(Manuel Formation), multiple

clastic intervals

Transition from offshore marine
mudstones to prodelta and deltaic
siltstones-sandstones

Platform carbonates are covered
by carbonate-clastic ramp
deposits and four distinct
siliciclastic intervals in the late
Julian-early Tuvalian

Platform carbonates covered by a
mixed carbonate-clastic series
with three siliciclastic intervals in
the late Julian-early Tuvalian

Switch from pelagic marls
(Partnach Formation) and
limestones (Reifling Formation)
to organic rich shales
(Reingraben Formation) and
deltaic sandstones (Lunz
Formation) with coals in the
Julian 2

Pelagic and platform carbonates
are interrupted by a mixed
carbonate clastic, mainly marl
sequence in the Julian 2

Xerophyte palynomorphs
predominant during the entire
Julian

Aulisporites astigmosus acme
missing in the Julian

Hygrophyte vegetation and
Aulisporites astigmosus acme
in the late Julian

Mainly xerophyte assemblages
Aulisporites astigmosus acme
missing

Hygrophyte palynomorphs
predominant in the Carnian,
Aulisporites astigmosus acme
in the Julian 1

Clastic intervals associated
with the increase of hygrophyte
palynomorphs

Aulisporites astigmosus acme
in the Julian 2

Clastic intervals associated
with the increase of hygrophyte
palynomorphs

Aulisporites astigmosus acme
in the Julian 2

Increase of hygrophyte
palynomorphs in the Julian 2
Aulisporites astigmosus acme
in the early Julian 2

Increase of hygrophyte
palynomorphs in the late
Julian

Five negative carbon
isotope excursions
during the late Julian
Initial isotope excursions
at the early/late Julian
boundary

N.D.

N.D.

Negative carbon isotope
excursion at the Julian 1
and 2 boundary

Negative carbon isotope
excursion at the Julian 1
and 2 boundary

N.D.

Negative carbon isotope
excursion at the Julian 1
and 2 boundary

Negative carbon isotope
excursion at the Julian 1
and 2 boundary

Minor humid pulse with a
prevailing relatively drier
background climate

Minor humid pulse with a
prevailing relatively drier
background climate

Multiple short-lived humid
episodes in the Carnian
punctuated by drier
intervals

Relatively drier and
warmer climate in the
Julian 1 and shift to
increased humidity in the
Julian 2

Multiple humid pulses
during the late Julian
Return to drier climate in
the Tuvalian

Multiple humid pulses
during the late Julian
Return to drier climate in
the Tuvalian

Multiple humid pulses
during the late Julian
Return to drier climate in
the Tuvalian

Shift to more humid
climate in the Julian 2

This study, Miller et
al. (2017)

Visscher et al. (1994)

Arche & L6pez-
Gomez (2014); Lopez-
Goémez et al. (2017)

Mueller et al. (2016a)

Roghi (2004); Roghi
et al. (2010)

Roghi et al. (2010)

Roghi et al. (2010);
Dal Corso et al.
(2015); Mueller et al.
(2016b)

Goczan et al. (1983);
Goczan & Oravecz-
Scheffer (19964, b);
Haas et al. (2012); Dal
Corso et al. (2015)




Spores Sidmouth Formation




Spores in the Sidmouth Formation with the indication of sample name, or code and slide number
1 Aratrisporites granulatus (111.98 m/1)

2 Aratrisporites granulatus (111.98 m/1)

3 Aratrisporites sp. (111.98 m/2)

4 Aratrisporites fimbriatus (109.11 m/1)

5 Aratrisporites fimbriatus (111.98 m/1)

6 Aratrisporites fimbriatus (111.98 m/1)

7 Aratrisporites sp. (111.98 m/1)

8 Uvaesporites gadensis (111.98 m/1)

9 Verrucosisporites morulae (111.98 m/1)
10 Verrucosispoirtes morulae high resolution same as 10, (111.98 m/1)
11 Calamospora tener (111.98 m/1)

12 Thomsonisporis toralis (109.11 m/1)

13 Lycopodiacidites sp. (109.11 m/1)

14 Kyrtomispories sp. (111.98 m/1)

15 spore indet A (111.98 m/1)

16 Rogalskaiasporites sp. (111.98 m/1)

17 Cyclogranisporites sp. (111.98 m/1)

18 Punctatisporites (111.98 m/1)

19 spore indet B (111.98 m/1)

20 Punctatisporites (111.98 m/1)

21 spore indet C (111.98 m/1)

22 cf Kraeuselisporites sp. (111.98 m/1)
23 cf Kraeuselisporites (111.98 m/1)

24 cf Kraeuselisporites sp. (111.98 m/1)
25 Verrucosispoirtes morulae (111.98 m/1)
26 Cyclotriletes sp. (111.98 m/1)

27 Aratrisporites sp. (111.98 m/1)

28 megaspore indet (111.98 m/1)

29 megaspore indet (109.11 m/1)



Pollen grains Sidmouth Formation




Pollen grains in the Sidmouth Mudstone Formation with the indication of sample name, or code and slide
number

1 Alisporites opii (WP-1 111.98 m/1)

2 Alisporites robostus (WP-1 111.98 m/1)

3 a) Triadispora aurea b) Lunatisporites acutus (WP-1 111.98 m/1)
4 Ovalipollis ovalis (WP-1 111.98 m/1)

5 Ovalipollis notabilis (WP-1 109.11 m/1)

6 Triadispora aurea (WP-1111.98 m/1)

7 Triadispora crassa (WP-1 111.98 m/2)

8 Cycadopites sp. (WP-1111.98 m/1)

9 Araucariacites australis (WP-1 111.98 m/1)

10 Brachysaccus neomundanus (WP-1 109.11 m/1)
11 Triadispora obscura (WP-1 111.98 m/1)

12 Triadispora plicata (WP-1 111.98 m/1)

13 Triadispora verrucata (WP-1 111.98 m/1)

14 Triadispora modesta (WP-1 111.98 m/1)

15 Triadispora staplini (WP-1109.11 m/1)

16 Aulisporites astigmosus (WP-1 111.98 m/1)

17 Aulisporites astigmosus (WP-1 111.98 m/1)

18 Aulisporites astigmosus (WP-1 111.98 m/1)

19 cf. Aulisporites astigmosus (WP-1 109.11 m/1)
20 Duplicisporites granulatus (WP-1 111.98 m/1)
21 Aulisporites astigmosus (WP-1 111.98 m/1)

22 Cycadopites sp. (WP-1111.98 m/2)

23 Vallasporites ignacii (WP-1 111.98 m/2)

24 Partitisporites novimundanus (WP-1 109.11 m/2)
25 Partitisporites novimundanus (WP-1 111.98 m/1)
26 Partitisporites scurrilis (WP-1 111.98 m/1)

27 Partitisporites scurrilis (WP-1 109.11 m/1)

28 Partitisporites scurrilis (WP-1 109.11 m/1)

29 Camerosporites secatus (WP-1 111.98 m/1)



Palynomorphs in the Dunscombe Mudstone Formation




Palynomorphs in the Dunscombe Mudstone Formation with the indication of sample
name, or code and slide number, scale bar 1-6, 16-17: 10 um; 7-15, 18-19: 20 um

1 Deltoidospora sp. (WEO16/A)

2 Deltoidospora sp. (WE213/A)

3 Concavisporites toralis (WE016/A)

4 Brodispora striata (WE111/A)

5 Triadispora epigona (WEO17/A)

6 Triadispora modesta (WE201/A1)

7 Alisporites grauvogeli (WP-1 57.86 m/1)
8 Alisporites sp. (WEQ17/A)

9 Ovalipollis ovalis (WE305/B)

10 Brachysaccus neomundanus (WEQ017/A)
11 Platysaccus sp. (WEO15/A)

12 Enzonalasporites vigens (WP-1 56.15 m/1)
13 Triadispora plicata (WE103/A)

14 Triadispora crassa (WE305/C)

15 Patinasporites iustus (WE305/C)

16 Botryococcus braunii (WEQ18/A)

17 Plaesiodictyon mosellanum (WEQ17A)
18 Plaesiodictyon mosellanum (WEQ017A)

19 insect remain, probably an egg? (WEOQL17/A)



Circumpolles pollen in the Dunscombe Formation




Circumpolles pollen in the Dunscombe Mudstone Formation with the indication of
sample name, or code and slide number, scale bar 10 um

1 Duplicisporites granulatus (WEQ003/A)

2 Duplicisporites granulatus (WE103/A)

3 Duplicisporites granulatus (WE305/B)

4 Duplicisporites granulatus (WE213/A)

5 Duplicisporites mancus (WE302/B)

6 Duplicisporites mancus (WE103/A)

7 Camerosporites secatus (WE213/A)

8 Camerosporites secatus (WE21/3A)

9 Camerosporites secatus (WE305/B)

10 Praecirculina granifer (WEOQO1/A)

11 same as 10 Praecirculina granifer (WE001/A), different focus
12 a Praecirculina granifer, b Camerosporites pseudoverrucosus (WEO015/A)
13 Praecirculina granifer (WE015/A)

14 Partitisporites novimundanus (WE003/A)

15 Partitisporites novimundanus (WP-1 49.8 5m/1)
16 Partitisporites novimundanus (WE201/A)

17 Partitisporites maljawkinae (WE302/A)

18 Partitisporites maljawkinae (WP-1 50.99 m/1)
19 Partitisporites maljawkinae (WP-1 55.65 m/1)
20 Partitisporites quadruplices (WE213/A)

21 Partitisporites quadruplices (WE213/A)

22 Partitisporites scurrilis (WEQ16/A)

23 Partitisporites scurrilis (WP-1 48.94 m/1)

24 Partitisporites scurrilis (WE103/A)



Palynomorphs in the Branscombe Mudstone Formation |




Palynomorphs in the Branscombe Mudstone Formation I with the with the indication of
sample name, or code and slide number, scale bar 10 um

1 Todisporites rotundiformis (WE203/C)

2 Cyclogranisporites sp. (WE203/B)

3 Calamospora tener (WE203/A)

4 Brodispora striata WE203/A)

5 Brodispora striata (WE203/A)

6 Concavisporites toralis (WE203/A)

7 a, b Aratrisporites granulatus (WE203/A)
8 Porcellispora longdonensis (WE203/A)

9 Porcellispora longdonensis (WE203/A)
10 Ovalipollis minimus (WE203/A)

11 Ovalipollis lunzenis (WE203/A)

12 Alisporites grandis (WE203/A)

13 Patinasporites densus (WE203/A)

14 Patinasporites densus (WE203/A)

15 Patinasporites iustus (WE203/A)

16 Pityosporites sp. (WE203/A)

17 Enzonalasporites vigens (WE203/A)

18 Patinasporites explanatus (WE203/A)
19 Enzonalasporites manifestus (WE203/B)

20 Pseudoenzonalasporites summus (WE203/A)



Palynomorphs in the Branscombe Mudstone Formation 11




Palynomorphs in the Branscombe Mudstone Formation Il with the indication of sample
name, or code and slide number, scale bar 10 pm

1 Partitisporites tenebrosus? (WE203/A)
2 Partitisporites tenebrosus? (WE203/A)
3 Camerosporites secatus (WE203/A)

4 Duplicisporites mancus (WE203/A)

5 Camerosporites secatus (WE203/A)

6 Partitisporites tenebrosus? (WE203/B)
7 Partitisporites tenbrosus? (WE203/B)

8 Partitisporites quadruplices (WE203/B)
9 Partitisporites quadruplices (WE203/B)
10 Partitisporites sp. (WE203/C)

11 Plaesiodictyon mosellanum (WE203/B)
12 Schizosporis sp. (WE203/A)

13 Schizosporis sp. (WE203/A)



Somerset palynomorphs




Somerset palynomorphs with the indication of sample name, or code and slide number,
scale bar 10 um. SM = Sutton Mallet, LH = Lipe Hill

1 Lunatisporites acutus (LH 2/2)

2 Triadispora plicata (LH 2/2)

3 Bisaccate indet with three airbags (LH 2/2)
4 acritach indet (LH 2/2)

5 acritarch indet same as 4 with different focus (LH 2/2)
6 Ovalipollis ovalis (LH 2/2)

7 Duplicisporites granulatus (LH 4/1)

8 Platysaccus sp. (LH 5/1)

9 Micrhystridium sp. (LH 2/2)

10 Alisporites grauvogeli (LH 7/1)

11 Brodispora striata (LH 9/1)

12 Duplicisporites granulatus tetrad (LH 8/1)
13 Camerosporites secatus tetrad (LH 7/1)
14 Gibeosporites lativerrucosus (SM 2/1)

15 cf. Aulisporites astigmosus (SM 3/1)

16 Aratrisporites scabratus (SM 3/1)

17 Patinasporites densus (SM 2/1)

18 Porcellispora longdonensis (SM 3/1)

19 Ricciisporites tuberculatus (SM 2/1)

20 Aratrisporites paraspinosus (SM 2/1)

21 bisaccate indet with three airbags (SM 4/1)
22 Cyclotriletes sp. (SM 4/1)

23 Camerosporites secatus (SM 2/1)

24 Cyclogranisporites sp. (SM 4/1)

25 Converrucosisporites tumolosus (SM 4/1)



List of all identified palynomorphs in alphabetic order

Spores

Anapiculatisporites sp.

Aratrisporites fimbriatus (Klaus, 1960) Playford & Dettmann, 1965
Aratrisporites granulatus (Klaus 1960) Playford & Dettmann 1965

Aratrisporites paraspinosus Klaus 1960

Aratrisporites scabratus Klaus 1960

Aratrisporites sp.

Calamospora tener (Leschik, 1955) De Jersey, 1962
Carnisporites sp.

Conbaculatisporites mesozoicus Klaus, 1960
Concavisporites toralis (Leschik, 1955) Nilsson, 1958
Converrucosisporites tumulosus (Leschik, 1956) Roghi 2004
Cyclogranisporites sp.

Cyclotriletes sp.

Dictyophyllidites harrisii Couper, 1958

Kraeuselisporites sp.

Kyrtomisporis laevigatus Madler 1964

Kyrtomisporis speciosus Madler 1964

Lycopodiacidites sp.

Osmundacidites wellmanni Couper, 1953

Porcellispora longdonensis (Clarke, 1965) Scheuring, 1970
Rogalskaiasporites sp.

Thomsonisporites toralis Leschik, 1955

Todisporites major Couper, 1958

Todisporites rotundiformis (Maljavkina, 1943) Pocock, 1970
Verrucosisporites moroluae Klaus, 1960

Bisaccate pollen grains

Alisporites diaphanous (Pautsch, 1958) Lund, 1977
Alisporites grandis (Cookson, 1953) Dettmann, 1963
Alisporites perlucidus Pautsch, 1973

Alisporites opii (Daugherty, 1941) Jansonius, 1962



Alisporites robostus Nilsson, 1958

Alisporites sp.

Brachysaccus neomundanus (Leschik, 1956) Méadler, 1964
Chordasporites singulichorda Klaus, 1960
Ellipsovelatisporites plicatus Klaus, 1960
Lunatisporites acutus (Leschik, 1955) Scheuring, 1970
Klausipollenites gouldii Dunay & Fisher, 1979
Klausipollenites schaubergeri (Potonie & Klaus, 1954) Jansonius, 1962
Minutosaccus crenulatus Dolby & Balme, 1976
Ovalipollis lunzensis Klaus, 1960

Ovalipollis minimus Scheuring, 1970

Ovalipollis notabilis Scheuring, 1970

Ovalipollis ovalis (Krutzsch, 1955) Scheuring, 1970
Ovalipollis sp.

Parillinites sp.

Pityosporites sp.

Platysaccus sp.

Protodiploxypinus fastidiosus (Jansonius, 1962) Warrington, 1974
Protodiploxypinus gracilis Scheuring, 1970
Sulcatisporites sp.

Triadispora aurea Scheuring, 1978

Triadispora bolchi Scheuring, 1970

Triadispora epigona Scheuring, 1970

Triadispora crassa Klaus, 1964

Triadispora obscura Scheuring, 1970

Triadispora modesta Scheuring, 1970

Triadispora plicata Klaus, 1964

Triadispora stabilis (Scheuring, 1970) Scheuring, 1978
Triadispora sulcate Scheuring, 1978

Triadispora suspecta Scheuring, 1970

Triadispora verrucata (Schulz, 1966) Scheuring, 1970
Triadispora sp.

Voltziaceaesporites heteromorpha Klaus, 1964



Monosaccate pollen grains

Enzonalasporites vigens (Leschik, 1956) Scheuring, 1970
Enzonalasporites manifestus Leschik, 1956
Patinasporites densus (Leschik, 1956) Scheuring, 1970
Patinasporites explanatus (Leschik, 1956)

Patinasporites iustus Klaus, 1960
Pseudoenzonalasporites summus Scheuring, 1970

Vallasporites ignacii Leschik, 1956

Non-saccate pollen grains

Aulisporites astigmosus (Leschik, 1955) Klaus, 1960
Camerosporites pseudoverrucosus

Camerosporites secatus (Leschik, 1955) Scheuring, 1970
Cycadopites sp.

Duplicisporites granulatus Leschik, 1956

Duplicisporites mancus Klaus, 1960

Lagenella martinii Klaus, 1960

Partitisporites maljawkinae (Klaus, 1960) Van der Eem, 1983
Partitisporites novimundanus (Leschik, 1956) Van der Eem, 1983
Partitisporites scurillis (Scheuring, 1970) Van der Eem, 1983
Partitisporites quadruplices (Scheuring, 1970) Van der Eem, 1983
Partitisporites tenebrosus (Scheuring, 1970) Van der Eem, 1983
Partitisporites sp.

Praecirculina granifer (Leschik, 1956) Klaus, 1960

Incertea sedis

Brodispora striata Clarke, 1965

Aquatic palynomorphs

Botryococcus braunii Kiitzing, 1849
Cymatiosphaera sp.

Micrihystridium sp.

Plaesiodictyon mosellanum Wille, 1970
Schizosporis sp.



Table S3 Wiscombe Park-1 palynofacies

Depth Dry weight |Lycopodium (added) |Lycopodium (counted)Bisaccates |Monosaccates |Non-saccate pollen |Spores|Charcoal |Cuticles |Plant tissues |Woody fragments |AOM |Algae |Botryococcus |Plaesiodictyon|Fungi|Total
48.94m [5.33g 12077 19 8| 2 3 0 300 0 2 17 9 0 10 0 o[ 351
49.85m [5.66g 12077 5 32 5 6 1 257 0 0 14 26 0 0 0 of 341
50.48m |5.85g 12077 21 59| 1 22 2 250 0 4 10 35 0 0 0 o[ 383
50.76m |5.33g 12077 2 33 0 16 0 6 0 9 0| 250 0 0 0 of 314
50.99m |5.31g 12077 23 202 4 22 2 30 0 7 0 45 0 0 2 of 314
51.75m |6.01g 12077 22 9 0 1 0 19 0 53 2| 227 0 3 0 of 314
55.30m |6.35g 12077 1000 8 0 1 7 95 0 64 3 8 0 0 0 O 186
55.65m |5.42g 12077 1 22 0 21 0 7 0 1 ol 275 0 0 0 of 326
56.15m |5.78g 12077 6 56 0 58 0 18 0 5 4] 180 0 1 0 of 322
56.51m |5.33g 12077 18 55 0 96 6 24 1 7 8| 135 0 0 0 of 332
57.86m |5.87g 12077 1000 6 0 5 1 31 2 180 15 45 0 0 0 o[ 285
60.00m [5.68g 12077 1000 0 0 4 1 22 0 82 14 17 0 0 0 0| 140
62.61m [5.60g 12077 1000 0 0 0 5 14 0 106 0 12 0 0 0 of 137
63.68m [5.51g 12077 1000 1 0 0 0 86 3 81 14 40 0 0 0 o[ 225
64.00m [15.7g 12077 133 [0) 0 [0) 0 286 0 10 10 10 0 0 0 O 316
64.66m  [5.59g 12077 7 0 0 0 0 4 0 12 1] 300 0 0 0 of 317
65.29m  [5.65g 12077 1000 10 0 1 5 145 0 38 14 140 0 6 0 o[ 359
66.59m [5.83g 12077 1000 3 0 3 1 46 0 148 5 57 0 0 0 of 263
67.89m |6.36g 12077 1000 3 0 [0) 2 54 0 69 6 59 0 0 0 o[ 193
69.04m  [10.38g 12077 1000 17 0 3 4 28 0 177 11 39 0 0 0 of 279
70.03m [15.5g 12077 638 2 0 0 0 36 0 126 17 130 1 0 0 of 312
70.37m [6.49g 12077 1000 1 0 0 1 13 0 155 26 13 0 0 0 o[ 209
70.80m |9.61g 12077 1000 [0) 0 [0) 1 18 0 110 20! 43 0 0 0 o[ 192
71.11m |5.56g 12077 1000 1 0 2 4 28 0 63 10 20| 0 0| 0 3| 128
71.31m  [6.40g 12077 465 0 0 0 0 78 0 56 6| 170 0 0 0 o[ 310
72.84m [6.62g 12077 750 6 0 0 1 62 0 30 7| 250 0 0 0 o[ 356
74.71m |10.06g 12077 452 11 4 [0) 0 200 0 80 3 25 0 0 0 o[ 323
82.45m [6.23g 12077 1000 2 0 1 75 2 60| 21 120 0 0 0 o[ 281
91.94m [6.47g 12077 175 0 0 0 0 11 0 9 7| 300 0 0 0 of 327
105.68m |10.28g 12077 711 7 0 11 7 23 0 220 5 43 0 0 0 o[ 316
109.11m |9.53g 12077 3 233 0 30 4 10 1 20 14 7 0 0 0 o[ 319
111.70m |10.18g 12077 147 2 0 2 2 148 0 116 25 30| 0 1 0 O 326
111.98m (10.20g 12077, 9 187 0 35 11 58 1 25 7 0 2 0 0 of 326
126.45m |10.01g 12077 374 8| 0 2 3 127 0 132 8 52 0 0 0 of 332




Table S4 Wiscombe Park-1 palynological counts

48.94m 49.85m 50.48m 50.76m  50.99m 55.30m 55.65m 56.15m 56.51m 60.00m 62.6lm 63.68m 64.00m 64.49m 65.29m 65.90m 66.59m 67.89m 69.04m 70.03m 70.37m 70.80m 71.11m 71.41m 71.46m 71.87m 82.45m 105.68m 109.11m 111.69m 111.98m 126.45m

Taxa/depth

Aratrisporits fimbriatus

Aratrisporites granulatus

Aratrisporites paraspinosus

Aratrisporites sp.

10

16

Calamospora tener
Carnisporites sp.

Conbaculatisporites mesozoicus

Concavisporites toralis

Cyclogranisporites sp.

Cyclotriletes sp.

Dictyophyllidites harrisii

Kreauselisporites sp.

0*

Lycopodiacidites sp.

Punctatisporites sp.

Rogalskaiasporites sp.

0*

Thomsonisporites toralis

Todisporites major

Todisporites rotundiformis

Uvaesporites sp.

Verrucosisporites moruluae

isporites grandis

isporites grauvogeli

isporites opii

isporites perlucidus

17
38

isporites robostus

isporites sp.

20

Al

Ali

Al
Al

Ali

Al

Brachysaccus neomundanus

Chordasporites singulichorda

21

10

Ellipsoveltisporites plicatus
Lunatisporites acutus

23

10

14

Klausipollenites gouldii

Klausipollenites schaubergeri
Microcachrydites doubingeri
Minutosaccus crenulatus

12
10
26

13

is minimus

is lunzensis
is ovalis

27

14

26

15

10

is notabilis

is sp.

Oval

Oval

Oval
Oval
Oval

20

Pityosporites sp.

Platysaccus sp.

Protodiploxypinus fastidiosus
Protodiploxypinus gracilis
Sulcatisporites karuseli
Triadispora aurea

16

26

Triadispora bolchi

24

Triadispora crassa

27 15 12

62

Triadispora epigona
Triadispora obscura

11
12

11

10

Triadispora modesta
Triadispora plicata

14

16

24

41

10

14

Triadispora stabilis

Triadispora sulcata

Triadispora suspecta

Triadispora verrucata

Triadispora sp.
Vitreisporites

65

35

95

62

100

75

42

65




Table S4 (cont.) Wiscombe Park-1 palynological counts (cont.)

Enzonalasporites vigens
Enzonalasporites manifestus
Patinasporites densus
Patinasporites iustus
Pseudoenzonalasporites summus
Vallasporites ignacii
Camerosporites secatus

C P
Duplicisporites granulatus
Duplicisporites mancus
Partitisporites maljawkinae
Partitisporites novimundanus
Partitisporites scurillis
Partitisporites quadruplices
Partitisporites sp.
Praecirculina granifer
Aulisporites astigmosus

cf. Aulisporites astigmosus
Cycadopites sp.

ites p:

Pollen indet
Bisaccate indet
Spore indet
Botryococcus
Lycopodium

tonly qualitative analysis, all slides
scanned, presence= 1, absence=0
*encountered after counting
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Tanble S5 Strangman’s Cove palynofacies

Samples |Dry weight (g)|Lycopodium (added) d ( d) |Bi M N accate pollen |Spores |Charcoal |Brown-black wood |Cuticles |Plant tissues|Woody fi AOM Resin |Algae indet |Botryococcus |PI yon |Fungi Total:

WE203 8| 12077, 47 93 44 27 37 67 6 0 23 0 15, 0| 28 0 0 5 340
WE204 8 12077 700 2 0 0 0| 206 0 0 21] 0 76 0 0 0 0 2 305
WE206 8 12077| 567 2 0 0 2 188 0 0 13| 0 110 0 0 0 0 8 315
WE207 8 12077] 224 0| 0 0 0| 20, 0 0 53] 0 230 0 0 0 0 8 303
WE208 8| 12077, 391 6 3| 3| 6| 56 0 0 3| 0 231 0| 0| 10 0 10 318
WE209 8 12077 1000 0| 0 0 0| 35, 0 0 4 0 50 0 0 0 0 7 89
WE212 8 12077| 82 12 1 5 0| 260 0 0 10| 0 25 0 0 0 0 2 313
WE213 8 12077] 51 3 0 5 1 285 0 0 4 1 10 0 0 0 0 0 309
WE214 8| 12077, 315 41 5| 25 11 85 0 0 11 0 137, 0| 0| 5 0 0 320
WE201 8 12077 635 52, 3 8 0| 156 0 0 43 0 32 0 0 1 0 5 295
WE216 8 12077| 148 0| 0 0 0| 300, 0 2 5 9 0 0 0 0 0 316
WE217 8 12077] 1000 3 1 5 0| 35, 0 0 16 0 77 3 0 0 5 29 145
WE303 8| 12077, 68 7 1 3| 1 275 0 1] 18 0 6 0| 0| 0 1] 3 313
WE302 8 12077 14 150 11] 26, 15 25 0 0 10 0 95 0 0 0 0 0 332
WE305 8 12077| 3 100 4 20, 6 100 133 0 4 1 0 0 0 0 0 0 368
WE 301 8 12077] 5 0| 0 0 2 13 16 0 3 7 300 0 4 1 1 4 347
WE112 8| 12077, 1000 10| 3| 2 6| 42 0 0 13 0 65 0| 0| 0 0 6 141
WE104 8 12077 1000 86, 1 10 30 120 0 0 22| 0 81 0 0 0 0 0 350
WE103 8 12077| 5 133 8 35] 45 33 0 0 18| 6 100 0 0 0 0 1 378
WE110 8| 12077 6| 27 3| 24 14 23 0 0 0| 5 235 0| 0| 0 0 0 331
WE111 8| 12077, 703 12, 1 10 11 200 0 0 10 7 92 0| 0| 0 0 20 343
WE109 8 12077 431 40 0 7 1 210 0 0 6 6 46 0 0 0 0 0 316
WE108 8 12077 310 3 1 2 9 12 0 0 0 0 280 5 0 13 0 8 325
WE107 8 12077] 1000 2 0 4 4 48 0 0 33| 0 103 0 0 0 0 100 194
WE114 8| 12077, 1000 11 0| 2 8 57 0 0 5| 4 60 0| 0| 0 0 5 147
WE115 8 12077 220 0| 0 0 2 26 0 0 41 0 28, 0 0 0 212 2 309
WEO019 8 12077| 26 10| 0 0 1 32 0 1 20| 5 27, 0 0 0 208 2 304
WEO018 8| 12077 91 1 0| 0| 0| 62 0 0 22 6 100! 0| 0| 2 128 18, 321
WEO017 8| 12077, 36 123 0| 0| 6| 50 0 0 20 5 9 0| 0| 1 155! 28 369
WEO016 8 12077 37 1 0 0 0| 93 10 0 4 4 211 0 0 0 0 0 323
WEO015 8 12077| 3 165 5 9 44 16| 0 0 8 0 88 0 0 3 0 0 338
WEO014 8| 12077 1000 22 4 14 9 111 0 0 13 1 155! 0| 0| 2 0 1] 331
WEO013 8| 12077, 1000 17 1 19 2 80 0 2 22 0 182 0| 0| 6 0 9 331
WE012 8 12077 297 24 0 16 0| 225 0 0 1 11 51 0 0 0 0 2 328
WEO011 8 12077| 1003 67 0 6 20 130 0 0 0 14 66 0 0 0 1 30 304
WEO010 8 12077] 1000 6 0 0 4 26 0 3 130 4 97, 0 0 22 29 6 321
WEO009 8| 12077, 1000 12 1 11 8| 172 0 0 6| 0 96 0| 0| 2 0 3 308
WE008 8 12077 54 7 0 0 0| 295 6 1 7 1 8 0 0 0 0 0 325
WE007 8 12077 1000 5 1 0 3 130 0 1 19| 0 64 0 2 6 0 0 231
WEO006 8| 12077, 912 1 0| 0| 2 160 0 0 15 0 134 0| 0| 0 0 0 312
WEO005 8| 12077, 358 5 0| 2 7 270 5 0 7, 0 12 0| 0| 0 0 0 308
WE004 8 12077 28 23 3 0 0| 260 30, 0 10 5 20 1 0 0 0 0 352
WE003 8 12077| 9 152 3 11] 26| 191 20 0 13| 20 0 0 1 0 0 0 437
WE002 8 12077] 163 1 0 0 1 305 2 0 2 0 5 0 0 0 0 0 316
WEO001 8| 12077, 184 22 0| 5| 5 240 0 0 30 2 20 0| 0| 0 0 0 324
WE304 8 12077| 311 0| 0 0 1 106 37 2 51 0 120 0 3 0 0 1 320




Table S6 Strangman’s Cove palynological counts

Taxa and samples WE203 WE214 WE201 WE302 WE305 WE104 WE103 WE109 WEO17 WEO15 WEO11 WEOO3

Aratrisporites sp. 0 2 o* * 0 0 0 0 3 0 1
Aratrisporites granulatus * 0 0 0 0 0 0 0 0 0 0 0
Calamospora tener 77 1 2 0 4 18 1 2 8 0 6 25
Carnisporites sp. 0 0 0 0* 0 0 0 0 0 0 0
Conbaculatisporites sp. 0 0 1 1 0 0 0 4 0 0 0 0
Concavisporites toralis * 0 0 0 0 0 0 0 0 0 0 0
Cyclogranisporites sp. 1 2 0 3 1 0 0 0 4 0 0 1
Dictyophyllidites harrisii * 1* 0 0 1 0 0 0 0 0 0
Kyrtomisporites laevigatus 0 0 0 0* 0 0 0 0 0 0 0
Kyrtomisporites speciosus 0 0 0 0 3 0 0 0 0 0 0 0
Osmundacidites wellmannii 0 3 2 4 0 0 9 2 0 0 0 5
Porcellispora longdonensis 12 0 0 0 0 0 0 0 0 1 0 0
Todisporites major 13 0 0 0 0 0 0 1 0 0 0 10
Todisporites rotundiformis 1 0 0* 0 2 0 0 0 0 0 2
Alisporites diaphanous 1 0 0 0 0 0 0 5 13 0 0
Alisporites grandis * 0 0 0 0 0 0 0 0 0 0 0
Alisporites grauvogeli 5 0 0 0 1 0 4 0 21 0 0 23
Alisporites opii 0 0 0 0* 0 0 0 1 0 0 0
Alisporites perlucidus 4 0 0 1 0 0 0 0 23 0 0 0
?Alisporites robostus (big) 0 0 0 0 0 0 0 0 12 0 0 0
Alisporites sp. 7 1 4 33 0 0 1 0 0 0 0 8
Brachysaccus neomundanus 0 0 0 0 1 0 0 0 0 0 0 0
Chordasporites singulichorda 0 1 0 0 0 0 0 0 1 0 1 0
Ellipsoveltisporites plicatus 0 1* 10 19 0 7 0 0 2 0 0
Lunatisporites acutus 3 0 0 * 0 0 3 0 1 1 0 3
Klausipollenites gouldii 10 15 12 18 18 2 4 18 33 1 7 16
Klausipollenites schaubergeri 4 0 0 0 0 0 0 0 2 0 0 0
Microcachrydites doubingeri 2 3 2 6 10 0 0 1 13 0 0 2
Minutosaccus crenulatus 2 10 4 0 18 1 5 0 6 2 3 0



Table S6 (cont.) Strangman’s Cove palynological counts (cont.)

Ovalipollis lunzensis 0 2 0 1 0 0 0 0 2 0 0 0
Ovalipollis minimus 4 0 1 4 4 0 1 0 6 1 0 12
Ovalipollis ovalis 23 0 2 26 7 0 12 0 0 18 0 45
Ovalipollis sp. 2 2 0 0 12 0 0 2 5 1 2 0
Pityosporites sp. 7 0 0 10 7 0 2 0 16 0 0 1
Platysaccus sp. 1 0 0 3 1 0 2 0 1 5 0 0
Protodiploxypinus fastidiosus 3 0 0 8 8 0 7 0 6 0 0 0
Protodiploxypinus gracilis 0 0 0 0 0 0 0 0 0 2 0 0
Rimaesporites sp. 1 0 0 5 2 0 1 0* 0 0 1
Triadispora bélchi 1 0 2 2 10 1 0 1 0 0 0 3
Triadispora crassa 1 0 0 0 0 0 6 0 0 0 0 0
Triadispora epigona 0 2 3 5 7 1 5 0 8 4 0 3
Triadispora modesta 0 0 0 1 0 0 4 2 0 0 0 5
Triadispora obscura 3 4 2 32 0 1 5 4 0 0 0 6
Triadispora plicata 7 0 0 8 21 0 20 0 76 3 0 9
Triadispora stabilis 0 0 0 0 0 0 0 1 0 0 0 0
Triadispora sulcata 0 0 4 1 0 0 1 0 0 12 0 0
Triadispora suspecta 0 0 0 2 0 0 0 0 0 0 0 0
Triadispora sp. 0 2 0 2 15 21 27 0 10 72 31 15
Vitreisporites sp. 0 9 0 0 8 0 0 0 0 0 0 0
Voltziaceaesporites heteromorpha 0 0 0 3 0 0 3 0 9 3 0 0
Enzonalasporites vigens 7 0 0 14 1 0 2 0 16 2 0 0
Enzonalasporites manifestus 18 0 0* 0 0 0 0 1 0 0 0
Patinasporites densus 7 0 0 1 0 0 1 0 1 0 0 0
Patinasporites explanatus * 0 0 0 0 0 0 0 0 0 0 0
Patinasporites iustus 0 0 0 0* 0 0 0 0 0 0 0
Pseudoenzonalasporites summus 16 0 0* 0 0 0 0 2 0 0 0
Vallasporites ignacii 1 0 2 1 0 3 0 3 1 0 0
Araucariacites sp. 1 0 0 1 0 0 0 0 0 0 1
Camerosporites secatus 24 48 6 42 125 2 70 3 8 24 1 26
Duplicisporites granulatus 1 15 21 62 29 10 9% 19 5 128 12 76
Duplicisporites mancus 2 0 4 3 0 13 0 2 0 0 0



Table S6 (cont.) Strangman’s Cove palynological counts (cont.)

Partitisporites novimundanus 0 0 0 0 0 4 8 0 0 0 6 27
Partitisporites scurrilis 0 0 0 0 0 6 14 0 0 0 2 7
Partitisporites tenebrosus * 0 0 0 0 0 0 0 0 0 0 0
Partitisporites indet * 0 0 0 0 0 0 0 0 0 0 0
Praecirculina granifer 0 18 4 1 33 4 31 3 0 0 2 1
Cycadopites sp. 0 0 5 0 0 0 3 0 0 0
Brodispora striata 3 0 0 0 0 0 0 0 0 0
Bisaccate indet 78 73 44 306 141 43 263 40 583 148 20 426
Pollen indet 16 20 8 29 0 9 28 5 25 0 10 4
Spore indet 3 0 0 0 0 0 0 0 3 0 1 5
Lycopodium (counted) 133 1020 1000 21 29 1000 27 1000 450 33 1000 56

* encountered after counting



Table S7 Somerset palynofacies

Lipe Hill
S-15-01
S-15-02
S-15-03
S-15-04
S-15-05
S-15-06
S-15-07
S-15-08
S-15-09
S$-15-10

Sutton Mallet
SM-15-01
SM-15-02
SM-15-03
SM-15-04

Dry weight Lycopodium (added) Lycopodium (counted) Bisaccates Non-saccate pollen Monosaccates Spores Cuticle Planttissues Woody fre Charcoal AOM Resin Plaesiodictyon Botryococcus Acritarch Fungi Total:

149g
16.3g
16g

17.8g
15.68
16.9g
16.2¢g
17.2g
16.1g
15.5g

16.2¢
16.2¢
14.7g
16.2¢g

12077
12077
12077
12077
12077
12077
12077
12077
12077
12077

12077
12077
12077
12077

95
23
47
56
95
50
21
45
45
48

43
20
19
10

0
178
151

67

87
155
200
217
110
180

110
112
30

1
7
12
5
5
37
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20
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Table S8 Lipe Hill palynological counts

Taxa/Samples LH-01 LH-02 LH-03 LH-04 LH-05 LH-06 LH-07 LH-08 LH-09 LH-10
Aratrisporites fimbriatus 0 0 0 0 0 0 1 0 0 0
Aratrisporites granulatus o|* 0 0 1 0 4 2 1 0
Calamospora tener 6 13 11 6 12 14 2 8 6 4
Concavisporites toralis 2 0 0 0 0 0 0 0 0 0
Cyclogranisporites sp. 0 0 4 0 0 o[* 0 0 0
Dictyophyllidites harrisii 1* * 1 0 0 0 0 0 1
Lycopodiacidites sp. 0 0 0 5 0 1 0 0 1 0
Osmundacidites wellmannii o|* 0 5 0 3 9 0 1 2
Porcellispora longdonensis 0 0 7 1 0 1 4 1 0 1
Todisporites major o|* 0 0 4 4 0 1 0 1
Alisporites gignateus 0 11 5 15 3 12 7 17 23 0
Alisporites opii 1 0 0 0 3 0 5 0 0 0
Alisporites grauvogeli 0 2 11 15 9 7 6 5 7 8
Brachysaccus neomundanus 0 1 1 0 0 0 0 0 0 0
Ellipsovelatisporites plicatus 0 8 0 1 0 0 0 1 o|*
Lunatisporites acutus 0 1 0 0 0 0 0 0 0 0
Klausipollenites gouldii 0 2 0 3 0 0 1 0 0 0
Microcachrydites doubingeri 0 1 2 3 1 0 5 0 1 0
Minutosaccus crenulatus 0 1 0 0 0 0 1 0 0 0
Ovalipollis lunzensis 0 15 15 7 62 5 1 3 6 12
Ovalipollis minimus 0 1 0 1 1(* 4 2 3 1
Ovalipollis notabilis o|* 5 1 0 0 2 1 0
Ovalipollis ovalis 0 52 40 16 65 8 7 13 13 16
Parillinites sp. 0 0 1 0 0 0 0 1 0 0
Pityosporites sp. 0 6 15 12 5 6 10 15 20 3
Platysaccus sp. 0 0 1 0 2 0 0 0 0 0
Protodiploxypinus gracilis o|* 0 0 0 0 0 0 0 0
Protodiploxypinus sp. 0 0 0 o|* 5 1 1 3 1




Table S8 (cont.) Lipe Hill palynological counts (cont.)

Triadispora aurea 0 1 0 1 0 3 1 3 3

Triadispora epigona 0 6 8 10 18 17 15 23 22
Triadispora crassa 0 7 5 3 3 0 0 2 0
Triadispora obscura 2 75 95 107 113 176 200 160 242 210
Triadispora modesta 0 6 5 3 1 1 2 6 0

Triadispora plicata 0 40 25 32 4 16 20 22 7 10
Triadispora sp. 0 67 65 87 0 23 5 1 0 0
Voltziaceaesporites heteromorpha 0 0 0 0 0 1 0 1
Enzonalasporites vigens 0 3 3 0 0 5 0 1 0
Vallasporites ignacii 0 0 0 0 1 0 1 0
Camerosporites secatus 0 5 11 10 2 1 8 10 11 5
Duplicisporites granulatus 0 4 6 10 11 29 10 15 20 18
Duplicisporites mancus 0 0 0 0 0 1 0 0 0 0
Partitisporites maljawkinae 0 3 1 0 2 0 7 6 9 10
Partitisporites novimundanus 0 1 0 0 1 1 1 1 3 1
Partitisporites scurillis 0 0 3 4 0 0 5 3 1 0
Partiti/Prae indet 0 5 0 0 0 0 0 0 0

Praecirculina granifer 0 9 4 30 16 23 33 22 19 23
cf. Aulisporites astigmosus 0 0 0 0 0 0 0 0
Cycadopites sp. 0 0 0 0 0 1 0 0 1 2
Lagenella martinii 0 0 0 0 0 0 0 0 4 0
Brodispora striata 0 0 0 0 0 1(* 2 2 1




Table S8 (cont.) Lipe Hill palynological counts (cont.)

Cymatiosphaera 0 1 0 0 0 0 0 1 0 0
Plaesidictyon 0 32 113 255 274 110 80 161 95
Botryococcus 8 1 1 9 1 5 2 4 6 0
Bisaccate indet 0 53 33 187 31 42 77 115 190 20
Pollen indet 0 0 1 1 0 0 0 5 0 0
Spore indet 0 0 0 0 0 0 0 0 0 0
Reworked acritarch 1 2 0 o[* * 0 0 0 0
Reworked sporomoph 0 0 0 1(* 0 0 0 0 0
Lycopodium (counted) 1000 84 180 662 395 107 109 115 239 115

*encountered after counting



Table S9 Sutton Mallett palynological counts

Taxa/Sample SM-01 SM-02 SM-03 SM-04
Anapiculatisporites sp. 0 1 0 0
Aratrisporites fimbriatus 0 4 0 2
Aratrisporites granulatus 2 38 10 20
Aratrisporites paraspinosus 0 5 5 0
Aratrisporites sp. 0 0 1 0
Calamospora tener 2 11 10 10
Concavisporites toralis 0 0 0 0
Cyclogranisporites sp. 0 5 2 0
Dictyophyllidites harrisii 0 2 3 0
Gibeosporites lativerrucosus o/* 0 0
Porcellispora longdonensis 0 o/* *
Thomsonisporis toralis 0 1(*

Verrucosisporites sp. 0 o|*

Alisporites giganteus 2 11 11 10
Alisporites grauvogeli 0 0 1f*
Alisporites opii 0 0 2 5
Ellipsovelatisporites plicatus 0 0 3 1
Lunatisporites acutus 0 0 1 0
Klausipollenites gouldii 0 0 0 2
Microcachrydites doubingeri 0 6 1)*
Minutosaccus crenulatus 0 1 o|*
Ovalipollis lunzensis 0 6 5 0
Ovalipollis minimus 0 0 o|*
Ovalipollis ovalis 1 11 4 16
Ovalipollis notabilis 0 7 1 4
Ovalipollis sp. 1 0 0 0
Parillinites sp. 0 0 0 3
Pityosporites sp. 2 8 10 11
Platysaccus sp. 0 o|* 5




Table S9 (cont.) Sutton Mallett palynological counts (cont.)

Triadispora aurea 0 0 0 1
Triadispora epigona 0 3 10 11
Triadispora crassa 0 13 5 3
Triadispora obscura 0 0 0 62
Triadispora modesta 1 1 2
Triadispora plicata 2 46 51 40
Triadispora stabilis 0 0 0
Triadispora sp. 25 145 165 58
Voltziaceaesporites heteromorpha 0 0 1 5
Enzonalasporites vigens 0 2 0 1
Patinasporites densus 1 1 1
Vallasporites ignacii 0 0 0
Camerosporites secatus 2 27 18 21
Duplicisporites granulatus 0 2 5 5
Duplicisporites mancus 0 1 1
Partitisporites maljawkinae 0 10 9 6
Partitisporites novimundanus 0 4 3 1
Partitisporites scurillis 6 2 3 2
Praecirculina granifer 0 12 20 20
Brodispora striata 0 2 1
Riccisporites tuberculatus 0 0 0




Table S9 (cont.) Sutton Mallett palynological counts (cont.)

Cymatiosphaera sp. 0 2 0

Schizosporis sp. 0 0 1

Plaesiodictyon mosellaneum 0 24 28 0
Botryococcus braunii 1 8 4 5
Bisaccate indet 14 222 102 90
Pollen indet 0 12 5 0
Spore indet 0 0 4
Megaspores indet 0 1 1 1
Reworked acritarchs 0 0 0 3
Lycopodium (counted) 1000 168 75 80

*encountered after counting
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Fig. S2. Relative abundance (%) of the different palynofacies groups and the variation in the
bulk organic carbon isotope values from the Strangman’s Cove outcrop section. The diagram
is plotted from data in Table S5 and Table S10.

Coefficient of determination (R?) from the linear regression analysis of the palynofacies
groups and bulk organic carbon isotope values:

TOC-bulk organic carbon R?=0.34

Spores-bulk organic carbon R*=0.27

Total pollen grains-bulk organic carbon R?=0.20
Charcoal-bulk organic carbon R?=0.36
AOM-bulk organic carbon R?=0.11

Plant tissues-bulk organic carbon R?=0.005
Woody fragments-bulk organic carbon R?=2.87-5
Algae-bulk organic carbon R?=0.01

Fungal contamination-bulk organic carbon R?=0.01



Samples | 613C TOC
WE202 | -27,38 0,06
WE203 -24,69 0,44
WE204 -24,34 0,14
WE206 | -24,72 0,29
WE207 | -26,05 0,08
WE208 -23,97 0,12
WE209 | -23,72 0,10
WE210 -22,69 0,12
WE211 | -22,17 0,11
WE212 | -21,61 0,43
WE213 | -21,60 0,38
WE214 | -23,70 0,11
WE201 | -22,93 0,14
WE215 | -23,82 0,82
WE216 | -21,48 0,31
WE217 -25,37 0,07
WE303 | -21,99 0,36
WE302 | -29,121 0,84
WE305 | -23,629 0,81
WE301 | -28,09 0,67
WE113 | -25,578 0,05
WE112 | -25,041 0,09
WE104 | -26,052 0,14
WE103 | -29,58 1,49
WE110 | -27,404 1,52
WE111 | -24,258 0,11
WE109 | -25,624 0,18
WE108 | -25,484 0,07
WE107 | -25,976 0,07
WE101 | -25,392 0,09
WE106 | -25,765 0,10
WE105 | -25,826 0,11
WE114 | -25,233 0,06
WE115 | -25,394 0,04

WE19 | -25,634 0,13
WE18 -25,378 0,11
WE17 | -26,346 0,17
WE16 | -23,403 0,18
WE15 -32,844 4,56
WE14 -23,11 0,12
WE13 -24,74 0,08
WE11 -25,20 0,04
WE10 -24,18 0,09
WE9 -27,03 0,19
WES -22,24 0,50
WE6 -26,18 0,08
WES -22,51 0,17
WE4 -26,29 0,37
WE3 -22,14 0,22
WE1 -22,70 0,10
WE304 | -22,37 0,17

Table S10 Strangman’s Cove bulk carbon isotope ratios and TOC
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