140 research outputs found

    Towards the operation of Cs K Sb photocathodes in superconducting rf photoinjectors

    Get PDF
    High quantum efficiency photocathodes are mandatory for the operation of photoinjector driven electron accelerators with high average current and high brightness beams. Photocathodes based on bi alkali antimonides, e.g., CsK2Sb, exhibit high quantum efficiencies for visible light and can be operated close to the photoemission threshold, thus they are suitable candidates to provide high current and low emittance electron beams. In this paper, a codeposition procedure of K and Cs on Sb resulting in high quantum efficiency photocathodes is presented and compared to the sequential growth procedure that was established for photomultiplier and accelerator applications. In situ x ray photoelectron spectroscopy is applied to gain insights into the reaction pathway of antimony with alkali metals, and to optimize the growth process of CsK2Sb on Mo. It has been found that the average stoichiometry of the samples is similar after both procedures. The study also presents the behavior of the photocurrent at cryogenic temperatures, the influence of cooling and warmup cycles on the photocathode lifetime and our experience with storage and transport. This work demonstrates that our codeposition growth procedure reproducibly delivers high quantum efficiency photocathodes, and that their quantum efficiency, when excited with green photons, is not influenced by cryogenic temperature

    Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease

    Get PDF
    BACKGROUND: Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS: In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS: Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract

    Testing the Water–Energy Theory on American Palms (Arecaceae) Using Geographically Weighted Regression

    Get PDF
    Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness patterns. A corollary hypothesis of water–energy dynamics theory is that the influence of water decreases and the influence of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset was divided into northern and southern hemispheric portions to test whether predictor shifts are more pronounced in the less oceanic northern hemisphere. American palms (Arecaceae, n = 547 spp.), whose species richness and distributions are known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in agreement with water–energy dynamics theory were found, but the results did not differ qualitatively between hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables were identified as important methodological challenges. We overcame these problems by using simultaneous autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are related to gradual latitudinal changes in ambient energy (related to solar flux input) rather than to abrupt transitions at specific latitudes, such as the occurrence of frost

    Vitamin D exposure and Risk of Breast Cancer: a meta-analysis

    Get PDF
    The relationship between vitamin D and breast cancer is still controversial. The present meta-analysis examines the effects of the 25(OH)D, 1,25(OH)2D and vitamin D intake on breast cancer risk. For this purpose, a PubMed, Scopus and Web of Science-databases search was conducted including all papers published with the keywords "breast cancer" and "vitamin D" with at least one reported relative risk (RR) or odds ratio (OR). In total sixty eight studies published between 1998 and 2018 were analyzed. Information about type of study, hormonal receptors and menopausal status was retrieved. Pooled OR or RR were estimated by weighting individual OR/RR by the inverse of their variance Our study showed a protective effect between 25 (OH) D and breast cancer in both cohort studies (RR?=?0.85, 95%CI:0.74-0.98) and case-control studies (OR?=?0.65, 95%CI: 0.56-0.76). However, analyzing by menopausal status, the protective vitamin D - breast cancer association persisted only in the premenopausal group (OR?=?0.67, 95%CI: 0.49-0.92) when restricting the analysis to nested case-control studies. No significant association was found for vitamin D intake or 1,25(OH)2D. CONCLUSION: This systematic review suggests a protective relationship between circulating vitamin D (measured as 25(OH) D) and breast cancer development in premenopausal women

    Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.</p> <p>Results</p> <p>We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.</p> <p>Conclusion</p> <p>Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.</p

    Understanding How Microplastics Affect Marine Biota on the Cellular Level Is Important for Assessing Ecosystem Function: A Review

    Get PDF
    Plastic has become indispensable for human life. When plastic debris is discarded into waterways, these items can interact with organisms. Of particular concern are microscopic plastic particles (microplastics) which are subject to ingestion by several taxa. This review summarizes the results of cutting-edge research about the interactions between a range of aquatic species and microplastics, including effects on biota physiology and secondary ingestion. Uptake pathways via digestive or ventilatory systems are discussed, including (1) the physical penetration of microplastic particles into cellular structures, (2) leaching of chemical additives or adsorbed persistent organic pollutants (POPs), and (3) consequences of bacterial or viral microbiota contamination associated with microplastic ingestion. Following uptake, a number of individual-level effects have been observed, including reduction of feeding activities, reduced growth and reproduction through cellular modifications, and oxidative stress. Microplastic-associated effects on marine biota have become increasingly investigated with growing concerns regarding human health through trophic transfer. We argue that research on the cellular interactions with microplastics provide an understanding of their impact to the organisms’ fitness and, therefore, its ability to sustain their functional role in the ecosystem. The review summarizes information from 236 scientific publications. Of those, only 4.6% extrapolate their research of microplastic intake on individual species to the impact on ecosystem functioning. We emphasize the need for risk evaluation from organismal effects to an ecosystem level to effectively evaluate the effect of microplastic pollution on marine environments. Further studies are encouraged to investigate sublethal effects in the context of environmentally relevant microplastic pollution conditions
    • …
    corecore