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Understanding How Microplastics 
Affect Marine Biota on the Cellular 
Level Is Important for Assessing 
Ecosystem Function: A Review
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Abstract
Plastic has become indispensable for human life. When 
plastic debris is discarded into waterways, these items can 
interact with organisms. Of particular concern are micro-
scopic plastic particles (microplastics) which are subject 
to ingestion by several taxa. This review summarizes the 
results of cutting-edge research about the interactions 
between a range of aquatic species and microplastics, 
including effects on biota physiology and secondary 
ingestion. Uptake pathways via digestive or ventilatory 
systems are discussed, including (1) the physical penetra-
tion of microplastic particles into cellular structures, (2) 
leaching of chemical additives or adsorbed persistent 
organic pollutants (POPs), and (3) consequences of bacte-
rial or viral microbiota contamination associated with 
microplastic ingestion. Following uptake, a number of 
individual-level effects have been observed, including 
reduction of feeding activities, reduced growth and repro-
duction through cellular modifications, and oxidative 
stress. Microplastic-associated effects on marine biota 
have become increasingly investigated with growing con-
cerns regarding human health through trophic transfer. 
We argue that research on the cellular interactions with 
microplastics provide an understanding of their impact to 
the organisms’ fitness and, therefore, its ability to sustain 
their functional role in the ecosystem. The review sum-
marizes information from 236 scientific publications. Of 

those, only 4.6% extrapolate their research of microplas-
tic intake on individual species to the impact on ecosys-
tem functioning. We emphasize the need for risk 
evaluation from organismal effects to an ecosystem level 
to effectively evaluate the effect of microplastic pollution 
on marine environments. Further studies are encouraged 
to investigate sublethal effects in the context of environ-
mentally relevant microplastic pollution conditions.
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6.1	 �Introduction

Plastic pollution is ubiquitous in the global environment. 
The Industrial Revolution paved the way for the rapid 
development in manufacturing of long-lasting plastic mate-
rials. Consequently, the volume of plastic waste produced 
has increased. Our reliance on this man-made material has 
led to what some call “the plastic age” (Thompson et  al. 
2009a). Worldwide ~348 million tons of plastics were pro-
duced in 2017, of which approximately 42% was used for 
single-use packaging (Geyer et  al. 2017; Plastics Europe 
2018). Littering, ineffective recycling management prac-
tices, weather events, etc. have all been linked to the release 
of plastics into the environment. It has been estimated that 
between 4.4 and 12.7 million tons of plastic enter the 
marine environment annually (Jambeck et al. 2015). Over 
time, in the environment and exposed to weathering, sun-
light, and mechanical degradation, large plastics will 
become brittle and break down to secondary microplastics 
(<5 mm) and nanoplastics (<100 nm) (MSFD Technical 
Group on Marine Litter 2013). Secondary microplastics 
also include microfibers that are washed out of synthetic 
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clothes (Browne et  al. 2011). Primary microplastics are 
small particles designed to be used for manufacturing large 
plastic items, including virgin resin pellets and microbeads 
(from cosmetics and personal care products) (Andrady 
2017). Many fibers and microbeads are too small to be 
removed by filters used in sewage systems and will be 
flushed into the sea (Carr et al. 2016; Lebreton et al. 2017). 
This makes the issue of marine plastics more pressing for 
the coming centuries due to a consistent increment in 
microplastic abundance (Browne et  al. 2007). Nowadays, 
microplastics are omnipresent, in rivers, estuaries, on 
shorelines, the ocean surface or in the water column, and on 
the seafloor (GESAMP 2015). The ubiquitous nature of 
microplastics in the environment means that biota can, and 
will, interact with them from the surface waters of the 
ocean to the deep sea. The bioavailability of microplastics 
depends on their size, density, abundance, shape, and color 
(Wright et al. 2013a). Over 1401 marine species are known 
to interact with marine plastic debris in different ways 
(Ocean Plastics Lab 2018). However, entanglement and 
ingestion are the most common types of interaction between 
biota and plastics (Gregory 2009). Fouling of bacteria on 
plastic particles may promote the ingestion of plastic mate-
rials by biota (Zettler et  al. 2013; Vroom et  al. 2017). 
Microplastic ingestion has been described for many taxa of 
animals including plankton, invertebrates, fish, sea turtles, 
and marine mammals (Cole et  al. 2013; Foekema et  al. 
2013; Schuyler et al. 2013; Hämer et al. 2014; Lusher et al. 
2015; Scherer et al. 2018). Current research efforts focus 
on the effects of microplastics entering and being chan-
neled up aquatic food chains. It is still being investigated 
which species are more susceptible to the encounter and 
uptake, and which mechanisms are simultaneously affected 
(Rochman et al. 2015). Many species have been observed 
to directly take up plastics, either by selective targeting of 
plastic items, or accidental ingestion by filtration or preda-
tion (Lusher 2015).

Most organisms are constantly confronted with inert par-
ticles of different sizes, shapes, and materials throughout 
their life. Seif et al. (2018) highlighted that, apart from plas-
tic, metal, glass, and building materials were also found in 
the intestines of gulls. Microplastics are often similar in size 
to sediment particles or may resemble a grain of sand. 
Therefore, it is not surprising that animals in coastal areas, 
particularly filter feeders, consistently encounter natural par-
ticles as well as particles generated by human activity like 
microplastics (Van Cauwenberghe and Janssen 2014; Weber 
et  al. 2018). Usually, if an animal is not able to digest an 
item, it egests it after some time (Garrett et al. 2012; Santana 
et al. 2017). Plastic particles represent foremost foreign bod-
ies inside an organism; nevertheless, their charge, chemical 

composition, and contamination are of particular interest. In 
many cases, added chemicals in plastic manufacturing and 
persistent organic pollutants seem to be the actual threat. 
Increasingly, studies focus on physiological effects of micro-
plastics on animals on an individual scale (Lusher 2015), as 
microplastics potentially cause cryptic sublethal effects that 
have to date rarely been investigated (Koelmans 2015). The 
effects include pathological stress, reproductive complica-
tions, changes in enzymes activities, reduced growth rate, 
and oxidative stress (Besseling et  al. 2014; Sutton et  al. 
2016). Smaller particles (<100 nm) may have greater conse-
quences upon ingestion, because they may end up in the tis-
sues or even inside the cells (Lusher 2015). The time a 
particle spends inside the body (i.e., the retention time) is 
crucial for estimating chemical exchanges within the body. 
Many studies investigate the occurrence of plastic within the 
intestinal tract of an organism without discussing an impact 
on the animal itself (Boerger et al. 2010; Lusher et al. 2013; 
Battaglia et al. 2016; Rummel et al. 2016; Baalkhuyur et al. 
2018). Yet, a wealth of studies identify effects of microplas-
tic with artificial concentrations that are far beyond natural 
levels as currently encountered in the ocean (Pedà et  al. 
2016; Lusher et al. 2017; Critchell and Hoogenboom 2018). 
Nevertheless, findings provide evidence that plastic particles 
can cause internal wounds, lesions, or blockage of the diges-
tive tract, which can promote a feeling of satiation that can 
lead to starvation, depletion of strength, and even death 
(Gregory 2009, Jovanović 2018).

It is important to disentangle the risks associated with 
ingested particles in an ecologically relevant context 
(Koelmans et al. 2017a). In a future of ever smaller particles, 
many organisms will be confronted with them, regardless of 
the size of the organism (Mattsson et al. 2017; Vendel et al. 
2017; Critchell and Hoogenboom 2018).

This review evaluates the consequences of microplastic 
ingestion by summarizing the pathways of ingested micro-
plastics and their subsequent effect on marine species, with 
some examples from freshwater species. The specific aims 
were to (i) collect results from current research of 
microplastic-derived impacts of organismal physiology and 
(ii) highlight the urgent need for embedding research on 
microbiological functioning of internal structures into the 
impact on ecosystem functioning. Further, this review aims 
to (iii) highlight the gaps of research that elaborate the sub-
lethal effects of microplastics on an ecosystem function 
approach. An extensive literature review of 236 scientific 
publications resulted in this synthesized review. The percent-
age of articles discussing impacts on ecosystem function 
were calculated.

Three types of consequences of microplastics uptake 
through the digestive tract or the respiratory system have 
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been identified: (1) physical penetration of microplastic par-
ticles into cellular structures, (2) leaching of chemical addi-
tives or persistent organic pollutants (POPs) into the body, or 
(3) infecting eukaryotic and bacterial microbiota from the 
surface of ingested microplastics (Fig. 6.1). First, availability 
of microplastics to different biota will be discussed (Sect. 
6.2). This entails the interactions of flora and fauna with 
microplastics. Further, known consequences of plastic 
particles in the tissues and cells are summarized (Sect. 6.3) 
with an evaluation on how cellular biomarkers are used 
(Sect. 6.4). Finally, the interactions between chemical pollut-
ants and structures in the body are evaluated (Sect. 6.5) lead-
ing to a discussion about trophic cascading (Sect. 6.6) and 
human health (Sect. 6.7). Finally, this review discusses path-
ways of microplastic particle interaction with biota on the 
cellular level and concludes with suggestions for concrete 
research foci (Sect. 6.8).

6.2	 �Interactions of Different Organisms 
with Microplastics

6.2.1	 �Microplastic Interaction with Aquatic 
Primary Producers

Effects on algae are often neglected to be considered. 
Bhattacharya et al. (2010) reported that nanosized plastic 
beads can be adsorbed by a green algae (Scenedesmus 

spp.), hindering the photosynthetic activity. This occur-
rence was attributed to the physical chemistry of the parti-
cles when positively charged. Photosynthesis of a marine 
diatom (Thalassiosira pseudonana) and marine flagellate 
(Dunaliella tertiolecta) was not affected, although at high 
concentrations and decreasing particle size of uncharged 
polystyrene particles, growth was reduced (Sjollema et al. 
2016). Microplastics can form aggregates with some phyto-
plankton species. The phytoplankton Rhodomonas salina 
has a tendency to incorporate more microplastic to the 
aggregate compared to Chaetoceros neogracile (Long et al. 
2015). More concerning effects are addressed in a recent 
study by Kalčíková et al. (2017) with a freshwater species. 
Sharp polyethylene microplastics from exfoliating cos-
metic products are reducing the viability of the root cells of 
the duckweed (Lemna minor), which detrimentally affects 
their growth. A similar phenomenon was observed in moss 
(Sphagnum palustre) where small aggregates of microplas-
tics entered into the hyalocyte cells of the leaf. Bigger 
aggregates of microplastic adsorbed on the moss’ surface 
(Capozzi et al. 2018). Adsorption was also observed in the 
colonial green algae Scenedesmus or seaweed Fucus vesic-
ulosus (Bhattacharya et al. 2010; Gutow et al. 2016). Such 
results address the significance of primary producers inter-
acting with microplastic (Yokota et al. 2017). Green et al. 
(2016) concluded that a reduction of macroalgal biomass 
can be responsible for the overall primary productivity of a 
sandy bottom ecosystem. This clearly alludes to further 

Fig. 6.1  Transfer pathways of microplastic particles and associated contaminants in the body of an organism (MP, microplastics; POPs, persistent 
organic pollutants). ∗Chemical impacts are graphically explored in more detail in Anbumani and Kakkar (2018)
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studies that quantify the effect of microplastics on the func-
tion that primary producers exhibit in the marine environ-
ment (Troost et al. 2018).

6.2.2	 �Microplastic Interactions 
with Invertebrates

The bioavailability of microplastic allows biological interac-
tions with organisms of different feeding types (Fig.  6.2). 
Availability of microplastic is sometimes dependent on the 
organisms itself, as for Antarctic krill (Euphausia superba) 
which can biologically fragment microplastic into smaller 
nanoparticles upon ingestion (Dawson et  al. 2018). Apart 
from the direct ingestion from the water, microplastic can be 
ingested through their prey (Watts et al. 2014; Green et al. 
2015) or through adherence on the organs that are primarily 
not involved in digestion (Kolandhasamy et al. 2018). The 
latter was observed in blue mussels with microplastic pres-
ence in the gonad, mantle, adductor, visceral, and foot 
(Kolandhasamy et al. 2018). Here, the digestive gland con-
tained the highest levels of microplastics; however, a clear-
ance experiment showed the retention of microplastics also 
in other organs.

When microplastics aggregate with marine snow 
(Summers et al. 2018) or phytoplankton (Long et al. 2015) 

they are especially attainable for small and large filter feed-
ers (Setälä et al. 2016, Besseling et al. 2015), and zooplank-
ton (Cole et al. 2013). Over time, microplastic is introduced 
to the sediment habitat. Together with sediment particles or 
feces, it can be consumed by benthic suspension or deposit 
feeders and detritivores, such as annelids (Besseling et  al. 
2013). Cole et al. (2015) observed that microplastics encap-
sulated within the fecal pellets can be transferred between 
coprophagous copepod species. Furthermore, floating micro-
plastics that wash onto the shore are available to inverte-
brates in the intertidal (Lourenço et al. 2017). Unsurprisingly, 
microplastic is not only ingested by marine invertebrates. 
Studies report about representative freshwater organisms 
such as zooplankton (Daphnia magna), amphipods (Hyalella 
azteca, Gammarus pulex), and sponges (Hydra attenuate) to 
be affected as well (Au et al. 2015; Rehse et al. 2016, 2018; 
Murphy and Quinn 2018; Weber et al. 2018).

6.2.3	 �Microplastic Interactions 
with Vertebrates

Predatory vertebrate species can ingest microplastic uninten-
tionally, when misidentifying synthetic microparticles for 
prey. This is especially common when the actual prey is of 
distinctive color, like in the case of the family of fish 

Fig. 6.2  Schematic presentation of microplastic interaction with different organisms in the food web. (Based on Wright et al. 2013a; Lusher 2015; 
Tosetto et al. 2017)
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Gerreidae and blue copepods (Ory et al. 2017). In addition to 
fish (Ramos et al. 2012; Choy and Drazen 2013), microplas-
tic was also reported in predators such as sea birds (Kühn 
and van Franeker 2012), sea turtles (Schuyler et  al. 2013, 
Yaghmour et al. 2018), and marine mammals (Lusher et al. 
2018). Vertebrates that ingested microplastic can also pro-
mote trophic transfer by ingesting microplastic-containing 
invertebrates (i.e., bivalves, amphipods, barnacles, poly-
chaetes) or even while scraping on biofilm (Ramos et  al. 
2012; Reisser et  al. 2014, Hodgson et  al. 2018). Once the 
microplastic-containing organisms, such as fish, crustaceans 
or polychaetes egest feces, microplastic can be available to 
coprophagous organisms (Cole et al. 2016).

The level of plastic uptake of an organism is accommo-
dated by several factors, such as foraging location, feeding 
strategies, life stage, and type of plastic in the environment. 
For example, the location of foraging plays an important role 
in what is ingested. Interestingly, oceanic juvenile and adult 
turtles ingested more debris than coastal foragers (Schuyler 
et al. 2013 and literature cited therein). Feeding mode seems 
to be correlated to the amount of plastic ingested by fish 
(Anastasopoulou et al. 2013; Romeo et al. 2015; Battaglia 
et  al. 2016). Early life stages of fish are suggested to be 
increasingly confronted with microplastic, as they dwell 
close to the ocean surface where floating microplastic con-
centrate (N.  Prinz, unpubl. data), or in the water column 
where particles become masked by microbial communities. 
Understanding differences in exposure conditions in the wild 
is of major importance to investigate how different species 
cope with exposure to microplastic in experimental set-ups 
(Rochman and Boxall 2014).

6.3	 �The Physical Aspect: Consequences 
of Microplastic Uptake

To quantify the interactions and effects of microplastic 
uptake in biota, laboratory exposure experiments are used on 
key species, resistant to versatile laboratory conditions 
(Devriese et al. 2015). To increase the probability of micro-
plastic uptake, the concentrations often exceed environmen-
tal levels by several orders of magnitude. Studies provide us 
with the future scenario without appropriate current repre-
sentation of the microplastic pollution (Rochman and Boxall 
2014; Paul-Pont et al. 2018). Therefore, caution needs to be 
taken when interpreting the results. Furthermore, studies 
need to clearly disentangle consequences of exaggerated 
microplastic uptake from those likely encountered in the 
wild.

Physical effects of microplastics can be observed on indi-
vidual or population level (Galloway and Lewis 2016). 
However, from 236 scientific publications reviewed herein, 
only 11 extrapolate results to the impact on ecosystem func-

tion (4.6%), with only three studies mentioning ecosystem 
function in the title (1.3%) (Table 6.1).

The effects of microplastics on specific specimen are 
mostly investigated in marine species. However, some 
already report the effects on freshwater organisms. Mattsson 
et  al. (2017) reported that the uptake of microplastics by 
freshwater Daphnia magna positively correlated with 
microplastic concentrations. This was also observed in the 
marine species such as bivalves (Macoma baltica, Mytilus 
trossulus), mysids, and in the fiddler crab, Uca rapax 
(Brennecke et al. 2015; Setälä et al. 2016). Upon ingestion, 
microplastics are either retained in the organism, accumu-
lated, egested, translocated into the tissue (Browne et  al. 
2008), or rejected. Rejection was observed in larvae of the 
sea urchin (Tripneustes gratilla). The ingestion of microplas-
tic was thus reduced as the larvae actively discriminated 
between edible and inedible particles (Kaposi et al. 2014). 
Moreover, zebrafish showed spitting behavior in laboratory 
conditions as an identification mechanism of ingested but 
inedible microplastics (Kim et al. 2019). A similar mecha-
nism of selection due to low nutritional content of the micro-
plastic was observed also in blue mussels, where particles 
were excreted as pseudofeces (Wegner et al. 2012; Farrel and 
Nelson 2013).

Yet, possibly not all animals have the ability of rejection, 
and microplastics are likely retained. The effect of the 
retained microplastics depends on the particle size (Wright 
et al. 2013a) and seems to be affecting organisms in several 
ways. Some organisms like the Atlantic Sea scallop 
(Placopecten magellanicus) retain bigger beads longer, as 
they are probably transferred to the digestive gland for 
digestion. Smaller particles are trapped in the rejection 
grooves on the sorting tracts and egested (Brillant and 
MacDonald 2000). Wright et  al. (2013b) attribute longer 
retention in lugworm to the low nutritional value of the par-
ticles and their extensive and energetically costly digestion. 
Similarly, in corals, the particles moved deep into their pol-
yps, wrapped in their mesenterial tissue. Since the tissue is 
responsible for the digestion, this raises concerns of the 
ability to ingest natural food (Hall et al. 2015; Allen et al. 
2017). Research on corals is still scarce, but some negative 
impacts on the health of stony corals were documented with 
the potential to be sublethal in the long term (Reichert et al. 
2018; Tang et al. 2018). In addition to size, the shape of the 
microplastics is influential. Irregularly shaped microplastic 
can cause histopathological damages, as observed in the 
intestine of adult zebrafish (Duis and Coors 2016; Horton 
et  al. 2017; Lei et  al. 2018) and European sea bass (Pedà 
et al. 2016).

The ingestion, retention, and egestion can impair the 
nutritional health of the organisms. The lungworm (Arenicola 
marina) is used in several studies as an indicator species and 
ecosystem engineer (Green et  al. 2016). Besseling et  al. 
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(2013) and Wright et al. (2013b) observed reduced feeding 
rates and weight loss in the lugworm upon feeding on poly-
styrene microplastics. The authors observed reduced growth, 
maturity, reproduction, and somatic maintenance due to 
depleted energy reserves (Wright et al. 2013b). Langoustine 
(Nephrops norvegicus) lost body mass due to microplastic 
retention, which resulted in lower growth rates (Welden and 
Cowie 2016). Sea urchin larvae had reduced their body 
width, which was again related to reduced feeding efficien-
cies (Kaposi et  al. 2014). Upon microplastic ingestion, 
Sussarellu et al. (2016) report that Pacific oysters (Crassostrea 
gigas) reallocated energy for reproduction to structural 
growth and maintenance. However, microplastic is differ-
ently affecting the nutritional health of the freshwater organ-
isms. Weber et  al. (2018) namely observed no significant 
effect on survival, development, metabolism (glycogen, lipid 
storage), or feeding activity of the freshwater amphipod 
Gammarus pulex upon microplastics ingestion. This is likely 
attributed to this species being a detritivore and adapted to 
non-digestible material.

Interestingly, the predatory performance of blue discus 
(Symphysodon aequifasciatus) juveniles and the common 
goby (Pomatoschistus microps) were negatively affected 
after microplastic exposure (de Sá et al. 2015; Fonte et al. 
2016; Wen et  al. 2018). Reduced performance raises con-
cerns for survival of the organism as it diminishes the chances 
of capturing prey or escaping the predators. This might have 
subsequent effects on the population level if the levels of off-
spring are reduced on account of starvation, reduced growth, 
reproductive failure, and mortality (Ferreira et  al. 2016; 
Galloway and Lewis 2016). In the studies by Lee et al. (2013) 
and Mazurais et al. (2015) mortality correlated with micro-
plastic abundance in nauplii and copepodite stages of cope-
pods and in the larvae of the European sea bass (Dicentrarchus 
labrax). Microplastic intake had lethal effects on fish larvae 
(Mazurais et al. 2015), forming a possible bottleneck in pop-
ulation dynamics which would lead into decrease of fish 
stocks (Steer et al. 2017; N. Prinz, unpubl. data).

Effects of microplastic were observed also on population 
level. Green and collaborators have shown a holistic effect of 
plastic on the function of bivalve-dominated sandy bottom 
ecosystems through measuring animal-mediated biogeo-
chemical processes and abundance of different biota (Green 
et al. 2015, 2016, 2017). Only a few studies conclude with 
possible impacts on ecosystem function by microplastics 
that induced reduction of intracellular metabolic and endo-
crine functioning.

Galloway et al. (2017) described the potential impacts of 
microplastic exposure from the subcellular to the ecosystem 
level. This emphasizes again that effects on enzyme activity, 
oxidative damage, or gene expression can lead to sublethal 
pathological responses in the cells and organs, eventually 
harming entire populations through reduced fitness. The con-

sequence of behavioral changes or community shifts can 
affect the ecosystem as we know it.

6.4	 �The Cellular Aspect: When 
Microplastic Particles Translocate 
into the Tissue

Current scientific efforts focus on more invasive effects of 
microplastics on organisms. Microplastic is not just affecting 
organisms when passing through the digestive system, but it 
can enter into the cells of the digestive tissue, be found in the 
blood and translocate between tissues (Volkheimer 1975, 
1977). Browne et al. (2008) first showed the translocation of 
microplastic from the gut to the circulatory system of the 
blue mussels (Mytilus edulis) in 3 days. The particles stayed 
there for almost 50 days. The translocation to the hemocytes 
was not particle size-dependent, as both 3 μm and 9.6 μm 
small microspheres translocated. Nevertheless, the smaller 
particles showed a higher probability of entering into the 
hemolymph. Translocated microplastics were also found in 
the laboratory experiments with the shore crab (Carcinus 
maenas). After 1  h the 0.5  μm polystyrene microspheres 
were found in the stomach, hepatopancreas, ovary, gills, and 
hemolymph (Farrel and Nelson 2013). The experiments with 
bigger microparticles (10 μm) failed to show translocations 
to other organs (Watts et  al. 2014), suggesting a size-
dependent translocation in organisms. Similar observations 
of microplastic presence in the hepatopancreas, the stomach, 
and the gills were made in the laboratory experiments with 
the fiddler crab, Uca repax (Brennecke et  al. 2015). 
Microplastics were observed in the endocytotic vacuoles of 
digestive epithelial cells of blue mussels, in their intestine 
and in the lumina of their primary and secondary ducts of the 
digestive gland. Epithelial cells of ducts and tubuli were 
eliminating microplastics, which were phagocytosed into the 
tissue, forming granulocytomas, an inflammatory response 
against the foreign particles (von Moos et  al. 2012). The 
translocation of microplastic can sometimes be specific. In 
held mullet (Mugil cephalus), in zebrafish and in European 
Anchovies (Engraulis encrasicolus) microplastic translo-
cated to their liver (Avio et al. 2015; Lu et al. 2016; Collard 
et  al. 2017). Once translocated, microplastics can either 
cause oxidative stress (von Moos et al. 2012; Lu et al. 2016) 
or remain inert (Oliveira et al. 2013; Alomara et al. 2017).

6.4.1	 �Biomarkers Revealing the Effects 
of Microplastic on the Cellular Level

The direct impacts of microplastics on signaling pathways in 
the tissue are of interest to increase the knowledge on cellu-
lar effects. To investigate this, biomarkers are used as these 
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biochemical tools measure an organisms’ response to envi-
ronmental contaminants (Monteiro et al. 2005). Many stud-
ies measured the activities of digestive enzymes as 
biomarkers. Microplastics affected, namely, digestive 
enzyme activities in the digestive system of isopods (Idotea 
emarginata), freshwater blue discus (Symphysodon aequi-
fasciatus), silver barb (Barbodes gonionotus), and common 
carp (Cyprinus carpio) (Haghi and Banaee 2017; Romano 
et  al. 2017; Wen et  al. 2018; Š. Korez, unpubl. data). The 
affected activities of enzymes, such as lipase, esterase, tryp-
sin, amylase, or alkaline phosphatase, show some kind of 
physiological challenge to the organism upon microplastic 
ingestion.

Microplastics enter into the cells through endocytosis or 
permeate through the lipid membrane when smaller than 
50 nm (Fig. 6.3) (von Moos et al. 2012; Pinsino et al. 2015; 
Jeong et al. 2017). One biomarker used to estimate the health 
of an animal is the lysosomal membrane stability (LMS) 
which is sensitive to environmental pollutants (Moore et al. 
2006). Lysosomes are single membrane organelles in the cell 
cytoplasm and are sensitive to environmental pollutants. 
Their function is cell-specific, however they are responsible 
for digesting the material taken into the cell (Martínez-Gómez 
et  al. 2015). Microplastics were found in the lysosomes of 
blue mussels and caused the lysosomal membrane to destabi-
lize, indicating that mussels were affected by the presence of 
these particles (von Moos et al. 2012; Avio et al. 2015).

Once in the cell, microplastic can induce oxidative stress 
due to a generation of reactive oxygen species (ROS). These 
are generated when particles are recognized as foreign par-
ticles by inflammatory cells, which generate an oxidative 
response (Miller et al. 2012). Through antioxidants, such as 
vitamins and enzymes, cells are usually appropriately pro-
tected (Lushchak 2011). Enzymes regulate the level of ROS 
in the cell but in the case of continuous exposure to micro-
plastic can cause oxidative damage (Fig. 6.3) (Sureda et al. 
2006).

There are a few studies concerning the biological effects 
of microplastics that use oxidative stress as a biomarker. 
Elevated ROS levels were observed in mussels (Mytilus 
spp.), monogonont rotifers (Brachionus koreanus), the labrid 
fish Coris julis, and the zebrafish Danio rerio after exposure 
to microplastic (Sureda et  al. 2006; Paul-Pont et  al. 2016; 
Jeong et al. 2016; Lu et al. 2016). Overall, microplastic tox-
icity generally increases with the decreasing particle size 
(Pan et al. 2007; Choi and Hu 2008; Jeong et al. 2016, 2017). 
Specifically, a negative correlation between ROS levels and 
decreasing microparticle sizes was shown in copepods, roti-
fers, and zebrafish (Jeong et al. 2016, 2017; Lu et al. 2016). 
The corresponding enzymatic defense mechanisms against 
elevated ROS follow the same trend of microplastic-size 
dependence. Rotifers (B. koreanus) and copepods 
(Paracyclopina nana) showed increased defense enzyme 
activities with decreasing microplastic size (Jeong et  al. 
2016, 2017). Endocytosis of nanoscale microplastics was not 
observed to induce oxidative stress responses in red mullet 
Mullus surmuletus. However, the increase in the activity of 
glutathione-S-transferase (GSF) was observed, suggesting 
activation of detoxification systems (Alomara et  al. 2017). 
Above listed species experienced no cellular changes, 
increase in enzyme activity, or oxidative damage even though 
the organisms ingested microplastics.

ROS can have detrimental effects on biomolecules such 
as lipids when there are insufficient amounts of antioxidants 
present (Lushchak 2011). Lipid droplets in the liver of 
zebrafish confirmed that microplastics affect lipid metabo-
lism (Lu et al. 2016). However, the trend was not universal in 
all organisms, as the lipid peroxidation levels remain 
unchanged in the labrid fish Coris julis, in the common goby 
and mussels (Mytilus spp.) after microplastics exposure 
(Sureda et  al. 2006; Oliveira et  al. 2013; Paul-Pont et  al. 
2016). The time of microplastic exposure plays a significant 
role, as short-term exposures showed no effect on lipid 
metabolism (von Moos et al. 2012; Avio et al. 2015). In addi-
tion to lipids, ROS can oxidate proteins and induce gene 
expression of specific metabolic pathways (Jeong et al. 2016, 
2017). In copepods (P. nana) and rotifers (B. koreanus), 
kinase proteins were activated, indicating cell death (Jeong 
et  al. 2016, 2017). In the copepod, P. nana (Jeong et  al. 

Fig. 6.3  Simplified schematic presentation of events upon microplas-
tic entering the cell. Reactive oxygen species (ROS) are produced as a 
response to the foreign particle. The antioxidant enzymes are protecting 
the cell against ROS. In case of constant exposition to ROS, oxidative 
damages occur that target biomolecules. (Adapted after Wakamatsu 
et al. 2008)

N. Prinz and Š. Korez
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2017), the nematode, Caenorhabditis elegans (Lei et  al. 
2018), and Mytilus galloprovicialis microplastics up-
regulated genes of cellular and immune defense pathways 
and enhanced the energy production (Avio et al. 2015; Détrée 
and Gallardo-Escárte 2017). The scleractinian coral 
(Pocillopora damicornis) showed induced antioxidant 
enzymes and detoxifying and immune enzyme activities 
were repressed (Tang et  al. 2018). In M. galloprovincialis 
microplastic caused DNA damages (Avio et al. 2015).

6.5	 �The Chemical Aspect: Uptake 
of Leachates from Microplastics 
into the Body

Microplastics do not solely have consequences as a foreign 
body. If microplastics are ingested, they can act as a vector 
for the transfer of chemical contaminants to individuals. 
Given the diversity of contaminants in aquatic environments 
as well as the complex chemical structure of plastic poly-
mers, a multitude of different chemical exchanges may occur 
inside the body of organisms upon ingestion (Karami et al. 
2016a; Karami 2017). Also in this regard, the retention time 
of microplastic particles within the body is especially crucial 
for possible chemical exchanges into the cells (Welden and 
Cowie 2016). Some plastic polymers are considered biologi-
cally inert (Rist et  al. 2018). Therefore, environmentally 
sorbed contaminants are of particular interest, as these chem-
icals can leach from the particle into the organism and affect 
metabolic pathways (Rochman 2015). An exact evaluation of 
the pollutants and their concentrations on the particle is 
needed to draw solid conclusions about the impact of micro-
plastics on biota.

6.5.1	 �Leaching Additives and Persistent 
Organic Pollutants: The Real Threat?

Plastics are synthesized from monomers, which are polymer-
ized to form macromolecular chains (Galloway 2015). 
Microplastics, in particular, can act as a vector for com-
pounds that are added during plastic production and may be 
toxic to organisms (Browne et al. 2008; Hermabessiere et al. 
2017). The final plastic polymers often include initiators, 
catalysts, solvents, stabilizers, plasticizers, flame retardants, 
pigments, and fillers (Crompton 2007; Galloway 2015). 
Because of their low molecular weight, toxic compounds, 
such as nonylphenol (NP) and bisphenol A (BPA), leach out 
of the plastic polymer, as they can naturally break down and 
release into the surrounding environment (Flint et al. 2012; 
Galloway 2015). Based on biodynamic modeling, 
microplastic-exposed animals, like lugworm and cod, are 

threatened by already low concentrations of NP and BPA 
(Koelmans et  al. 2014, Bakir et  al. 2016). Other evidence 
suggests BPA to cause reproductive toxicity in breeding 
zebrafish (Danio rerio) (Laing et al. 2016).

Alternatively, chemicals dissolved in the surrounding 
seawater can adsorb on the microplastic’s surface. A multi-
tude of factors influence the sorption-desorption of persis-
tent pollutants (PPs) from the seawater onto microplastics, 
including shape, size, type of polymer, fouling, pH, tem-
perature, PP concentration, and Kow (n-Octanol/Water 
Partition Coefficient) of PPs (Teuten et  al. 2007; Wang 
et al. 2016). Some persistent pollutants (PPs) that sorb onto 
microplastics are polycyclic aromatic hydrocarbons 
(PAHs), pesticides (dichlorodiphenyl trichloroethane, 
DDTs), polychlorinated biphenyls (PCBs), metals, and 
other endocrine disrupting chemicals (Ng and Obbard 
2006; Cole et al. 2011; Bakir et al. 2014; Avio et al. 2015; 
Llorca et al. 2018). The importance of chemical exchange 
not only in the water column but in the sediment cannot be 
underestimated, as heavy metals from antifouling paints, 
fuel combustion, and industrial waste in sediments can sorb 
onto microplastics (Deheyn and Latz 2006; Holmes et al. 
2012; Rochman et al. 2013; Khan et al. 2015; Brennecke 
et  al. 2016). The global concentration of POPs in marine 
plastic pellets was estimated to be 1 – 10,000 ng g−1 (Ogata 
et al. 2009; Hirai et al. 2011).

Additives and pollutants sorbed onto microplastics are 
bioavailable to marine microorganisms which can metabo-
lize them (Chua et al. 2014; Avio et al. 2015; Wardrop et al. 
2016; Auta et al. 2017). Laboratory studies artificially spike 
microplastics to quantify in how far digestion is an important 
process in the so-called leaching or desorption of POPs. 
When particles containing adsorbed chemicals are ingested 
by an organism, the change in surrounding conditions can 
promote the release of pollutants (e.g., Besseling et al. 2013; 
Browne et al. 2013; Batel et al. 2016). Desorption rates of 
some contaminants in gut surfactants are up to 30 times 
faster than in the surrounding seawater (Bakir et al. 2014). 
These desorption rates are influenced by many factors such 
as pH and body temperature (Hollman et  al. 2013; Bakir 
et al. 2014). For instance, PCBs may leach into fat tissue due 
to their hydrophobic properties (Hollman et  al. 2013). In 
short-tailed shearwaters (Puffinus tenuirostris) from the 
field, chemical tracers were identified in the blubber tissue 
and the same tracers were isolated from plastics found in 
their stomachs (Tanaka et al. 2013). This is particularly inter-
esting, as most studies up-to-date only investigate the diges-
tive tract and draw conclusions from there. Some other 
important factors for leaching processes, like the constituent 
polymer, shapes, sizes, and buoyancy differences, are to be 
considered in bioassay protocols and microplastic toxicity 
testing (Karami et al. 2016b).
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Biomarker responses in organisms like fish can provide 
insights in specific chemical interactions (Rudneva 2013). 
Measuring biomarkers such as the activity of enzymes is not 
only used for the effect of the inert particles on internal 
metabolism (Sect. 6.4.1) but also to elucidate the effect of 
chemical contaminants such as pesticides in the body 
(Ferreira et al. 2016). Plastic-associated chemicals can bind 
to specific cell receptors, which activate signaling pathways. 
In the common goby, virgin plastic particles did not induce 
acute toxicity of chromium (Luís et al. 2015). PAH, Benzo[a]
pyrene, with which plastics were spiked, sorb into the intes-
tine in adult zebrafish (Batel et  al. 2016). The decrease in 
enzyme activity leads to a loss of energy (Oliveira et  al. 
2013), which can result in movement and vision difficulties 
and consequently influence predatory performance of the 
organisms (Ferreira et al. 2016; Fonte et al. 2016; Wen et al. 
2018). This, in turn, could be investigated further to estimate 
the effect on the function of an organism in the ecosystem.

Chemical contaminants can have a wide range of harmful 
effects such as causing cancer and endocrine disruption, 
hepatic stress, birth defects, immune system problems, and 
early development issues (Teuten et  al. 2009; GESAMP 
2015; Rochman et  al. 2013; Setälä et  al. 2016; Auta et  al. 
2017). Bioaccumulation has been found in animal as well as 
in plant tissue with the consequence of ecotoxicity (Chua 
et al. 2014; Chae and An 2017; Smith 2018). Toxicity can 
already occur by simple attachment of contaminated micro-
plastics on epithelia of zebrafish, with serious effects of 
waterborne toxic substances on early life stages (Batel et al. 
2018). This shows that adherence rather than ingestion led to 
the accumulation of microplastics and associated toxicity 
(Batel et al. 2018). Furthermore, it is suggested that freshwa-
ter species suffer a higher risk, as the presence of salts in the 
water decrease the tendency of some chemicals to be sorbed 
onto plastic surfaces (Llorca et al. 2018).

Koelmans et  al. (2016) suggested that microplastics 
ingestion by marine biota does not increase their exposure to 
hydrophobic organic compounds but could have a “cleaning 
effect”, i.e., adsorption of bioaccumulated POPs onto micro-
plastics, while being ingested. This theoretical explanation is 
supported by Rehse et  al. (2018), who concluded that the 
presence of ingested microplastic particles can actually 
reduce the effects of BPA from surrounding water in fresh-
water zooplankton by a decreased body burden of the envi-
ronmental pollutant. Kleinteich et al. (2018) found a similar 
result where a lower bioavailability of PAHs was found when 
they were sorbed to microplastics. As virgin particles not 
loaded with POPs did not cause any observable physical 
harm in zebrafish and clams (Batel et al. 2016; O’Donovan 
et al. 2018), there is evidence that chemical contamination is 
the key to understanding the exact impact of microplastic on 
marine biota (Hermabessiere et al. 2017).

Another line of evidence suggests that the combined 
effect of microplastics and sorbed contaminants altered 
organs homeostasis in a greater manner than the contami-
nants alone (Rainieri et al. 2018). This can only be further 
evaluated with controlled laboratory exposures to facilitate 
monitoring of the uptake, movement, and distribution of 
chemical compounds in whole organisms and excised tissues 
such as gills, intestinal tract, and liver (Lusher et al. 2017). 
Yet, little is known about the effects and influence of 
microplastic-associated toxins on the functionality of an 
organisms’ body, and consequently associated altered eco-
system function (Table 1).

6.5.2	 �Microplastics as a Vector for Pathogens

A variety of biotic and abiotic particles can serve as vectors 
for pathogens, yet due to the persistence of plastic in the 
marine environment, microplastics are likely to travel farther 
and for longer periods of time than other types of foulable 
particles (Dobretsov 2010; Harrison et  al. 2014). 
Contaminated microplastics within the marine environment 
may be transported between ocean basins and may contrib-
ute to the transfer of contaminants between ecosystems 
(Zarfl and Matthies 2010). This transfer is not limited to 
chemical contaminants, but also includes the transport of 
microbial communities consisting of “epiplastic” diatoms, 
coccolithophores, bryozoans, barnacles, dinoflagellates, 
invertebrate eggs, cyanobacteria, fungi, and bacteria (Zettler 
et al. 2013; Reisser et al. 2014; De Tender et al. 2015; Eich 
et al. 2015; Quero and Luna 2017). Bacterial communities 
associated with microplastics can potentially modify pres-
ently unpolluted habitats (Kleinteich et al. 2018).

Microplastics can serve as a substrate for microbiota as 
they offer a surface, the so-called plastisphere for attachment 
and settlement (Zettler et al. 2013). Microplastics can thus 
become a vector for non-ciliate pathogens, such as viruses 
(Masó et al. 2003; Pham et al. 2012) and pathogenic bacteria 
(Viršek et al. 2017). Studies in temperate and coral reef envi-
ronments have investigated how pathogens on microplastic 
may trigger disease outbreaks in organisms. For example, 
Lamb et  al. (2018) found that the likelihood of disease in 
corals increases from 4% to 89% when they are in contact 
with plastic, and, Goldstein et al. (2014) reported the trans-
mission of the coral pathogen Halofolliculina spp. on plastic 
debris. Polypropylene marine debris is dominated by the 
genus Vibrio (Zettler et  al. 2013), which are opportunistic 
pathogenic bacteria that can cause coral disease (Bourne 
et  al. 2015). The microbial biofilm on microplastics, i.e., 
ecocorona (Lynch et al. 2014) can not only transport patho-
gens but influence the physical properties of the particle 
itself. A thick ecocorona reduces the ultraviolet (UV) light, 
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reaching the surface of polyethylene particles by 90% 
(O’Brine and Thompson 2010) and makes the particle more 
hydrophilic (Lobelle and Cunliffe 2011). This increases a 
particle’s sinking velocity (Li and Yuan 2002), which may 
influence their bioavailability by exposing organisms in 
other parts of the marine environment to microplastics and 
associated chemicals (Bråte et al. 2018).

Microplastic biofilms appear distinct compared to those 
on other marine substrata and are shaped by spatial and sea-
sonal factors (Oberbeckmann et  al. 2015). Foulon et  al. 
(2016) summarize that the colonization of microplastics by 
the oyster-infecting Vibrio crassostrea is enhanced when the 
microplastic was already coated by a layer of primary marine 
aggregates. These secondary colonizers show a chemical 
attraction to the particle surface indicating a layering of colo-
nizers in the ecocorona (Galloway et al. 2017).

These “camouflaged” plastic particles can be ingested by 
organisms such as zooplankton (Eich et  al. 2015; Vroom 
et  al. 2017) and even larger organisms. Some laboratory 
experiments concluded that bioavailability of plastics seems 
to be enhanced by particles that have been exposed to natural 
seawater for some time (Bråte et al. 2018). Yet, Allen et al. 
(2017) suggest that plastic contains phagostimulants that 
promote ingestion by corals. Interestingly, corals ingested 
more virgin plastic than plastics covered in microbial bio-
film. Both lines of evidence highlight the likelihood of 
microplastic being ingested by different organisms for dif-
ferent reasons which needs to be better understood in a future 
with likely increasing amounts of microplastics in the ocean 
(Harrison et al. 2011; Allen et al. 2017).

Microorganisms in coastal sediments represent a key cat-
egory of life with reference to understanding and mitigating 
the potential effects of microplastics, due to their role as 
drivers of the global functioning of the marine biosphere 
(Harrison et  al. 2011). This is of particular interest with 
regards to their ability to biodegrade plastic-associated addi-
tives, contaminants, or even the plastics themselves (Harrison 
et al. 2011).

6.6	 �Trophic Cascade

It has been hypothesized that microplastics transfer within 
the marine food web from prey to predator (Fig. 6.2). The 
real extent to which trophic transfer occurs in the wild, how-
ever, remains largely unknown, although, laboratory studies 
have tried to investigate this (Nobre et al. 2015; Setälä et al. 
2016). These studies demonstrated trophic transfer for low 
trophic level food chains, such as Artemia sp., crabs and fish 
(Murray and Cowie 2011; Farrell and Nelson 2013; Setälä 
et al. 2014; Watts et al. 2014; Batel et al. 2016). Observations 
of whole prey demonstrate trophic transfer from sand eels 
(Ammodytes tobianus) to plaice (Pleuronectes plastessa) in 

the wild. The lack of significant difference in microplastic 
abundance between predator and prey however suggests that 
microplastic is not retained by P. platessa (Welden et  al. 
2018). The likelihood of secondary ingestion is limited, as 
retention times and transit of particles through the gut of a 
prey organism can be relatively fast.

Interestingly, transfer of microplastics can occur from 
prey to predators, without evidences of microplastics persist-
ing in their tissues after 10 days of exposure (Santana et al. 
2017). Higher concentrations of microplastics were found in 
a predatory shellfish from the Persian Gulf, which lead the 
authors to suggest trophic transfer of microplastics in the 
food web without quantification in the prey (Naji et al. 2018). 
Seabird fecal pellets contained a similar composition of 
fibers to those which were identified in their macroinverte-
brate prey which suggests that trophic transfer may be occur-
ring (Lourenço et al. 2017). All predatory marine organisms 
are susceptible to ingest microplastic through their prey. 
Toothed marine mammals may be more likely to experience 
trophic transfer as primary route of microplastic ingestion 
than through direct intake (Lusher et al. 2016, Hocking et al. 
2017). Feces of grey, harbor and fur seals or regurgitated ful-
mar remains of skuas suggest trophic transfer as these spe-
cies are known to ingest whole prey (Eriksson and Burton 
2003; Rebolledo et  al. 2013; Hammer et  al. 2016, Nelms 
et al. 2018). The contamination of microplastics appears to 
be transported into the deep ocean, not only by the change in 
density by fouling (Sect. 6.5.2) but through sinking of animal 
carcasses where it becomes available for scavengers (Clark 
et al. 2016).

A study by Mattsson et al. (2017) describes how plastic 
nanoparticles are transferred up through a freshwater algae-
daphnia-fish food chain and enter the brain of the top con-
sumer. The damaging effect on the brain leads to a disruption 
of the fish’s natural behavior. In contrast, marine Kreffts’s 
frill gobies (Bathygobius kreffti) (Tosetto et al. 2017) and an 
indo-pacific planktivore (Acanthochromis polyacanthus) 
(Critchell and Hoogenboom 2018) did not show altered 
behavior. Studies investigating animal’s behavior are of 
extreme importance to draw conclusions about potential 
effects on ecosystem function. There are many relevant spe-
cies for ecosystem function that need scientific attention 
(Rochman 2016; Wieczorek et  al. 2018), such as different 
functional groups of fishes (Vendel et al. 2017).

An outdoor mesocosm experiment in sediment cores eval-
uated the potential effect of microplastics on the functioning 
of an ecosystem by quantifying the filtration rates of 
European flat oysters (Ostrea edulis) and blue mussels 
(Mytilus edulis) and the entire sedimentary community 
(Green et al. 2017). Filtration rates significantly decreased in 
M. edulis but increased in O. edulis when exposed to micro-
plastics, affecting porewater ammonium. A decrease in bio-
mass of benthic cyanobacteria and polychaetes emphasized 
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the potential of microplastics to impact the functioning and 
structure of the sediment environment. Here, not only tro-
phic transfer but the simultaneous effect of microplastic on 
the function biota in an ecosystem was stressed.

If trophic transfer occurs in the wild, this may also be a 
route for the transfer of any associated chemicals on the plas-
tics. For example, laboratory experiments on simple artificial 
food chains, such as with nauplii and zebrafish, have esti-
mated that a transfer of associated POPs occurs (Zhu et al. 
2010). Bioaccumulation and biomagnification of chemical 
contaminants, such as PCBs and organochlorine pesticides 
(OCPs), are known to occur at higher trophic levels, particu-
larly affecting marine top predators (Tsygankov et al. 2015; 
Jepson et al. 2016). Whether or not this chemical accumula-
tion is connected to plastic-associated leaching remains 
unknown. It has been shown, however, that microplastic-
associated chemicals can cause toxicity not only in marine 
animals (Choy and Drazen 2013; Rochman et  al. 2015; 
Rummel et al. 2016; Karami et al. 2018) but also in humans 
(Hecht et al. 2010).

6.7	 �Microplastics and Human Health

Concerns of marine organism-derived microplastic and 
human health were extensively reviewed when microplastics 
began emerging as a potential threat to ecosystems 
(Thompson et al. 2009b; Talsness et al. 2009). Microplastic-
induced toxicity and the evaluation of consequences for 
human health have been the focus of current literature (Revel 
et al. 2018). These concerns are magnified due to the pres-
ence of microplastic particles in food items worldwide. 
Research into the abundance of plastics in food has focused 
on seafood caught or cultured for human consumption (Van 
Cauwenberghe and Janssen 2014; Rochman et al. 2015; Naji 
et  al. 2018). In dried fish the eviscerated flesh contained 
higher microplastic loads than the excised organs, which 
highlights that removing the digestive tract does not elimi-
nate the risk of microplastic intake by consumers (Karami 
et  al. 2017). When consuming an average portion of filter 
feeders like mussels, consumers can ingest up to 90 micro-
plastic particles (Lusher et al. 2017). It was estimated that a 
European shellfish consumer annually ingests between 1800 
and 11,000 microplastics (Van Cauwenberghe and Janssen 
2014), with the potential for increased concentrations in 
farmed shellfish (Murphy 2018). Still, studies conclude that 
the low prevalence of often inert microplastics might indi-
cate limited health risks as suggested by investigations of 
microplastic loads in canned fish (Karami et  al. 2018). 
Particle uptake in the human body depends on the particle’s 
size, surface charge and functionalization, hydrophobicity, 
and protein corona (Wright and Kelly 2017). The uptake of 

inert particles across the gut has been widely studied 
(O’Hagan 1996). Nanopolymers can be taken up across the 
gut into the circulation and be redistributed to the liver and 
spleen (Galloway 2015). In theory, all organs may be at risk 
following chronic exposure to nanopolymers. This includes 
the brain, testis, and reproductive organs, prior to their even-
tual excretion in urine and feces as evidenced in recent labo-
ratory studies in invertebrates and fish (Jani et  al. 1996; 
Garrett et al. 2012).

In fact, recent media has featured research on microplas-
tics in other non-aquatic consumables such as bottled water, 
sugar, salt, beer, and honey (see EFSA 2016; Karami et al. 
2017; Schymanski et  al. 2017; Rist et  al. 2018). Carbery 
et al. (2018) reviewed that there is no robust evidence for the 
transfer of microplastics and associated contaminants from 
seafood to humans and the implications for human health. 
Microplastic uptake through seafood consumption may be 
minimal when compared to other routes of human exposure, 
for example, fibers settling on consumables, or dust in the 
household (Catarino et  al. 2018). Food items packaged in 
plastic may lead daily exposure to different plastic-associated 
chemicals up to 250 μg kg-1 body weight (EFSA 2011; 
Muncke 2011). Rist et al. (2018) describe that according to a 
comparison of two studies, exposure to microplastic inges-
tion from packaging is higher to a magnitude of 40 million 
compared to the exposure from shellfish. Prata (2018) sum-
marized diseases originating from airborne microplastics 
and the consequences to human health; a person’s lungs 
could be exposed to between 26 and 130 airborne microplas-
tics per day. The continuous daily interaction with plastic 
items already leads to the presence of plastic and associated 
chemicals in the human body (Galloway 2015). Plastic addi-
tives, such as BPA, are a risk factor to human health 
(Srivastava and Godara 2017). Lithner et  al. (2011) con-
ducted a comprehensive ranking of plastic polymers, identi-
fying physical, environmental, and health risks. The 
quantification of plastic particles in food is suggested to be 
included as one of the components of food safety manage-
ment systems (Karami et al. 2018).

Given the long-term persistence of plastics within exten-
sive variety of polymer types and additive composition, more 
research is required to adequately assess the risks that accu-
mulation of micro- and nanoplastics in the body may pose 
and the true potential to induce pathology (Galloway 2015; 
Prata 2018). Furthermore, exposure to nanoplastics cannot 
be precisely estimated yet due to a lack of technological 
means (EFSA 2016). Despite the focus on human health 
being a major driving force to increase the investigation of 
marine biota and plastic interactions because of the eco-
nomic value of marine protein, the diminished ecosystem 
service that some species might provide for humans should 
be highlighted.
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6.8	 �Research Gaps and Future Work

In spite of almost a decade of research, microplastic research 
is still in its infancy, and it is still very difficult to estimate the 
cumulative risks of chronic exposure to plastics and their 
additives. This is due to the limited information available 
about rates of degradation and fragmentation, leaching of 
chemicals into environmental matrices, and entry into the 
food chain (Hermabessiere et  al. 2017). Additionally, bio-
logical responses of microplastic on the molecular level are 
difficult to interpret, as the particles’ chemical structure is 
complex and versatile. It can be concluded that current plas-
tic use is not sustainable (Thompson et  al. 2009a), which 
calls for an immediate change in plastic production, con-
sumption, and human behavior, to reduce the amount of 
microplastics present in the environment. Mendenhall (2018) 
highlights the large-scale impacts of plastic debris on eco-
system function as a major knowledge-gap.

Although the informative review by Anbumani and 
Kakkar (2018) summarized different “ecological impacts” of 
microplastics on aquatic biota and the potential for ecologi-
cal niche imbalance, an organism’s role in ecosystem func-
tion is not discussed. Auta et al. (2017) also elaborate on the 
effects and fate of microplastic ingested by biota and suggest 
remedies such as microbial activity against microplastic con-
tamination in the environment. Galloway et  al. (2017) 
reviewed current literature and considered microplastic 
debris to become a planetary boundary threat through its 
effects on crucial processes exhibited by biota. Chae and An 
(2017) discuss different global concentrations in freshwater 
and marine environments, as well as the intrinsic and com-
plex toxicological effects on biota. It is mentioned that 
research studying effects on generational and ecological 
effects is important, but no specific references are given.

There is a possibility that organisms may adapt to cer-
tain conditions, especially when they are exposed to low 
concentrations of contaminants for a longer period of time 
(Sureda et al. 2006). One could even propose that animals 
will evolutionarily adapt to microplastic concentrations in 
the environment, which in the future would not affect their 
fitness. Such suggestion could only apply to the organisms 
in water column or water surface habitats where the micro-
plastic concentration is mostly stable. Organisms in the 
sediment or in the intertidal may however be exposed to an 
ever-increasing microplastic concentration in the near 
future (Lobelle and Cuncliffe 2011; Green et al. 2017). It 
is, therefore, critical to continuously evaluate removal rates 
from the water column towards the sediment or deep sea, as 
intended by analytical model approaches (Koelmans et al. 
2017b). Reduced functionality is correlated to the disap-
pearance of animals (Lusher et al. 2017). If biological pro-
cesses at the base of ecosystems are altered because of the 

presence of microplastics, biologically mediated disruption 
to the long-term storage of carbon could occur (Villarrubia-
Gómez et  al. 2017). Despite attempts to model whether 
microplastics can affect the overall productivity of a marine 
ecosystem, no clear conclusion can be drawn yet (Troost 
et al. 2018).

Upon reviewing 222 journal articles, 9 book chapters, two 
reports, two dissertations and one exhibition, the following 9 
research foci need to be especially considered in the future:

	1.	 Laboratory studies should focus on experiments with 
environmentally relevant quantities and sizes of 
microplastic and contaminants to estimate actual impacts. 
Therefore, for instance, studies should include plastic 
particles, fouled in natural seawater to estimate the role of 
fouling and/or investigate the degree of chemical contam-
ination from a certain area in the sea in the laboratory.

	2.	 Studies suggest that toxicity of virgin microplastics, 
spiked microplastics, additives, or contaminants affect the 
organisms differently (Karami 2017). Further studies are 
needed to elucidate and distinguish these effects on dif-
ferent organisms and with regards to varying availability 
of plastic debris and POPs in different ecosystems.

	3.	 Usually the digestive system is investigated for micro-
plastic presence and their effects. Other tissues such as 
muscle tissue and fat (blubber) should be collected and 
analyzed for the presence of microplastic tracers and fur-
ther compared to stomach analysis results (Tanaka et al. 
2013; Lusher et al. 2015).

	4.	 More studies on the base of the food chain and the subcel-
lular level are necessary to conclude effects on the indi-
vidual or population level. For this, we suggest 
microbiome studies and genetic tools.

	5.	 Limited studies relate the effect on the ecological func-
tion of marine organisms after being influenced by micro-
plastics and associated contaminants (Mattsson et  al. 
2017) (Table 1). Different feeding strategies need to be 
considered.

	6.	 More research is needed to understand the potential 
impact of micro- and nanoplastics on primary production 
and food web interactions.

	7.	 There is a necessity to develop techniques to identify bac-
terial communities on microplastics.

	8.	 A special focus should be put on freshwater species as 
they may be at higher risk of some chemicals to be sorbed 
onto plastic surfaces (Llorca et al. 2018).

	9.	 Many indigestible materials apart from plastic, such as 
wood, metal, glass and building materials, that are found 
in the nature that need to be considered. Therefore, other 
natural and anthropogenic materials should be considered 
as a comparison, when analyzing the effects of 
microplastics.
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6.9	 �Summary

Along with ever-increasing plastic production, the amount of 
plastic waste that enters the oceans is also on the rise. The 
breakdown of larger debris into microplastic pieces is of high 
scientific concern as it can become bioavailable. In recent 
years, aquatic flora and fauna have been found to be affected 
in different ways when coming into contact with microplas-
tics. This review summarizes that microplastics can attach or 
get physically ingested by almost all aquatic taxa or affect 
biota via leachates or pathogens from the microplastic sur-
face. Some studies highlighted that under environmentally 
relevant levels, microplastic may not necessarily pose risks 
to the organisms, as particles are often inert. However, other 
lines of evidence found adverse physiological effects of 
microplastic in organisms, either through tissue damage, 
through cellular uptake, or through chemical contamination 
of leachates from the microplastics. In addition, microplas-
tics can be a vector of pathogens into the tissue of organisms. 
Often, these effects do not cause death but a sublethal altera-
tion of body functions. The consequences result in reduced 
primary productivity, compromised energy allocation, 
reduced growth, changed feeding efficiency, or altered pred-
atory performance. Combined with other environmental 
stressors, this can lead to alterations of the ecological func-
tion of a species in the ecosystem. Only 4% of studies 
reviewed here investigated how reduced physiological pro-
cesses, caused by microplastic, are linked with the ecological 
role, an organism and its population play. There is a general 
consensus that both the microplastic size and their concen-
tration is critical to understand the impact on an organism. 
This review emphasized the importance that decreasing par-
ticle size and chemical contamination can affect organisms 
to the extent that critical body functions are impaired. This, 
in turn, can influence the functional role the organism fulfills 
in the ecosystem. Since microplastic is bioavailable to the 
smallest of organisms, secondary ingestion can occur, which 
may be channeled through the food web. Particular concern 
arises when microplastic is found in species for human con-
sumption. Nevertheless, we argue that the uptake of plastic 
and plastic-associated chemicals occurs more through every-
day sources in the urban environment, rather than seafood 
consumption and highlight the need to investigate the impor-
tance of impacted ecological functionality of species regard-
ing ecosystem services for humans.

This review summarized cutting-edge research to under-
stand some hazard potentials for different species and 
research gaps that still need to be examined. This particular 
field of science is necessary as reliable risk assessments are 
crucial, contributing to current environmental and societal 
discussions, and future perspectives concerning microplastic 
pollution. The focus should be set on the elucidation of 

microscopic impacts of plastics on biota for the sake of 
understanding the impact these small particles can have on 
populations and functionality of an entire ecosystem that 
needs to be protected.
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�Appendix

This article is related to the YOUMARES 9 conference ses-
sion no. 7: “Submerged in Plastic: impacts of plastic pollu-
tion on marine biota”. The original Call for Abstracts and the 
abstracts of the presentations within this session can be 
found in the Appendix “Conference Sessions and Abstracts”, 
Chapter “6 Submerged in Plastic: Impacts of Plastic Pollution 
on Marine Biota”, of this book.
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