521 research outputs found

    First principles investigations of the electronic, magnetic and chemical bonding properties of CeTSn (T=Rh,Ru)

    Full text link
    The electronic structures of CeRhSn and CeRuSn are self-consistently calculated within density functional theory using the local spin density approximation for exchange and correlation. In agreement with experimental findings, the analyses of the electronic structures and of the chemical bonding properties point to the absence of magnetization within the mixed valent Rh based system while a finite magnetic moment is observed for trivalent cerium within the Ru-based stannide, which contains both trivalent and intermediate valent Ce.Comment: 6 pages, 7 figures, for more information see http://www.physik.uni-augsburg.de/~eyert

    Self-stresses and Crack Formation by Particle Swelling in Cohesive Granular Media

    Full text link
    We present a molecular dynamics study of force patterns, tensile strength and crack formation in a cohesive granular model where the particles are subjected to swelling or shrinkage gradients. Non-uniform particle size change generates self-equilibrated forces that lead to crack initiation as soon as strongest tensile contacts begin to fail. We find that the coarse-grained stresses are correctly predicted by an elastic model that incorporates particle size change as metric evolution. The tensile strength is found to be well below the theoretical strength as a result of inhomogeneous force transmission in granular media. The cracks propagate either inward from the edge upon shrinkage and outward from the center upon swelling

    BCI-Based Navigation in Virtual and Real Environments

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de Andalucía (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF

    Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation

    Get PDF
    Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is reconsidered. It is shown that the original expressions for exchange integrals based on the magnetic force theorem (J. Phys. F14 L125 (1984)) are optimal for the calculations of the magnon spectrum whereas static response function is better described by the ``renormalized'' magnetic force theorem by P. Bruno (Phys. Rev. Lett. 90, 087205 (2003)). This conclusion is confirmed by the {\it ab initio} calculations for Fe and Ni.Comment: 12 pages, 2 figures, submitted to JPC

    Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition

    Get PDF
    We discover that hcp phases of Fe and Fe0.9Ni0.1 undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio and M\"ossbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe

    Surface Properties of the Half- and Full-Heusler Alloys

    Full text link
    Using a full-potential \textit{ab-initio} technique I study the electronic and magnetic properties of the (001) surfaces of the half-Heusler alloys, NiMnSb, CoMnSb and PtMnSb and of the full-Heusler alloys Co2_2MnGe, Co2_2MnSi and Co2_2CrAl. The MnSb terminated surfaces of the half-Heusler compounds present properties similar to the bulk compounds and, although the half-metallicity is lost, an important spin-polarisation at the Fermi level. In contrast to this the Ni terminated surface shows an almost zero net spin-polarisation. While the bulk Co2_2MnGe and Co2_2MnSi are almost half-ferromagnetic, their surfaces lose the half-metallic character and the net spin-polarisation at the Fermi level is close to zero. Contrary to these compounds the CrAl terminated (001) surface of Co2_2CrAl shows a spin polarisation of about 84%.Comment: 14 pages, 6 figure

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds

    Magnetic properties of Ni2.18Mn0.82Ga Heusler alloys with a coupled magnetostructural transition

    Full text link
    Polycrystalline Ni2.18Mn0.82Ga Heusler alloys with a coupled magnetostructural transition are studied by differential scanning calorimetry, magnetic and resistivity measurements. Coupling of the magnetic and structural subsystems results in unusual magnetic features of the alloy. These uncommon magnetic properties of Ni2.18Mn0.82Ga are attributed to the first-order structural transition from a tetragonal ferromagnetic to a cubic paramagnetic phase.Comment: 4 pages, 4 figures, revtex

    Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys

    Full text link
    We study the origin of the gap and the role of chemical composition in the half-ferromagnetic Heusler alloys using the full-potential screened KKR method. In the paramagnetic phase the C1_b compounds, like NiMnSb, present a gap. Systems with 18 valence electrons, Z_t, per unit cell, like CoTiSb, are semiconductors, but when Z_t > 18 antibonding states are also populated, thus the paramagnetic phase becomes unstable and the half-ferromagnetic one is stabilized. The minority occupied bands accommodate a total of nine electrons and the total magnetic moment per unit cell in mu_B is just the difference between Z_t and 2×92 \times 9. While the substitution of the transition metal atoms may preserve the half-ferromagnetic character, substituting the spsp atom results in a practically rigid shift of the bands and the loss of half-metallicity. Finally we show that expanding or contracting the lattice parameter by 2% preserves the minority-spin gap.Comment: 11 pages, 7 figures New figures, revised tex
    corecore