129 research outputs found
Air-sea gas transfer velocity for oxygen derived from float data
We estimated the air-sea gas transfer velocity for oxygen using three consecutive years (Sept. 2003 to Aug. 2006) of high-quality oxygen measurements from profiling floats in the central Labrador Sea. Mixed layer oxygen concentrations exhibit strong seasonality characterized by biologically and thermally driven evasion during spring/summer and invasion during fall/winter caused by cooling and ventilation of oxygen-deficient subsurface waters. Mixed layer oxygen budgets entirely excluding the spring bloom
period are employed to estimate the air-sea transfer velocity for oxygen. By using co-located wind speed data acquired by scatterometry from the QuikSCAT satellite, wind speed dependent parameterizations for the air-sea gas transfer velocity k660 (CO2 at 20◦C and salinity 35) are established and compared with prominent parameterizations from the literature. Quadratic, cubic and quartic functions are fitted to the data for short-term and long-term wind
speed averages separately. In both cases the quadratic functions yield the poorest fit to the observations. Overall, the stronger curvature of the cubic functions provides the best fit, while the quartic function also fits the data less well. Our results generally confirm the stronger wind speed dependencies among the suite of published parameterizations. Also the better fits found for cubic function points at the strong importance of very high wind speed for airsea gas exchange of O2
Dissolution of calcium carbonate: observations and model results in the North Atlantic
International audienceWe investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons. The study relies on observations from the open subpolar North Atlantic [sNA] and on a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep CaCO3 saturation horizons, and precisely-defined pre-formed alkalinity. Based on the analysis of a comprehensive alkalinity data set we find that SDCCD does not appear to be a significant process in the open sNA. The results from the model support the observational findings and do not indicate a significant need of SDCCD to explain observed patterns of alkalinity in the North Atlantic. Instead our investigation points to the importance of mixing processes for the redistribution of alkalinity from dissolution of CaCO3 from below its saturation horizons. However, mixing has recently been neglected for a number of studies that called for SDCCD in the sNA and on global scale
Sensors and instruments for oceanic dissolved carbon measurements
Highly accurate and precise measurements of marine carbon components are required in the study of the marine carbon cycle, particularly when investigating the causes for its variability from seasonal to interannual timescales. This is especially true in the investigation of the consequences of anthropogenic influences. <br><br> The analysis of any marine carbon component requires elaborate instrumentation, most of which is currently used onboard ships, either in manual or automated mode. Technological developments result in more and more instruments that have sufficient long-term reliability so that they can be deployed on commercial ships, surface moorings, and buoys, whilst the great technological and operational challenges mean that only few sensors have been developed that can be used for sub-surface in situ measurements on floats, robots, or gliders. There is a special need for autonomous instruments and sensors that are able to measure a combination of different components, in order to increase the spatial and temporal coverage of marine carbon data. <br><br> This paper describes analytical techniques used for the measurement of the marine dissolved carbon components, both inorganic and organic: the fugacity of CO<sub>2</sub>, total dissolved inorganic carbon, pH, alkalinity, and dissolved organic carbon. By pointing out advantages, disadvantages, and/or challenges of the techniques employed in the analysis of each component, we aim to aid non-carbon marine scientists, sensor developers and technologists, in the decision of which challenges to address in further development
Dissolution of calcium carbonate: observations and model results in the subpolar North Atlantic
We investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons using observations from the open subpolar North Atlantic [sNA] and to a lesser extent a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow-depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep CaCO3 saturation horizons, and precisely-defined pre-formed alkalinity. Based on the analysis of a comprehensive alkalinity data set we find that SDCCD does not appear to be a significant process in the open sNA. The results from the model support the observational findings by indicating that there is not a significant need of SDCCD to explain observed patterns of alkalinity in the North Atlantic. Instead our investigation points to the importance of mixing processes for the redistribution of alkalinity from dissolution of CaCO3 from below its saturation horizons. However, mixing has recently been neglected for a number of studies that called for SDCCD in the sNA and on global scale
Low oxygen eddies in the eastern tropical North Atlantic: Implications for N2O cycling
Nitrous oxide (N2O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N2O concentrations in the Atlantic OMZ are relatively high and low, respectively. This study, however, demonstrates that recently discovered low oxygen eddies in the eastern tropical North Atlantic (ETNA) can produce N2O concentrations much higher (up to 115 nmol L−1) than those previously reported for the Atlantic Ocean, and which are within the range of the highest concentrations found in the open-ocean OMZs of the Pacific and Indian Oceans. N2O isotope and isotopomer signatures, as well as molecular genetic results, also point towards a major shift in the N2O cycling pathway in the core of the low oxygen eddy discussed here, and we report the first evidence for potential N2O cycling via the denitrification pathway in the open Atlantic Ocean. Finally, we consider the implications of low oxygen eddies for bulk, upper water column N2O at the regional scale, and point out the possible need for a reevaluation of how we view N2O cycling in the ETNA
Hidden biosphere in an oxygen-deficient Atlantic open ocean eddy: future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic
The eastern tropical North Atlantic (ETNA) is characterized by a highly productive coastal upwelling system and a moderate oxygen minimum zone with lowest open ocean oxygen (O2) concentrations of around 40 μmol kg−1. Only recently, the discovery of re-occurring mesoscale eddies with sometimes close to anoxic O2 concentrations (<1 μmol kg−1) and located just below the mixed layer challenged our understanding of O2 distribution and biogeochemical processes in this area.
Here, we present the first metagenomic dataset from a deoxygenated anticyclonic modewater eddy in the open waters of the ETNA. In the eddy, we observed a significantly lower bacterial diversity compared to surrounding waters, along with a significant community shift. We detected enhanced primary productivity in the surface layer of the eddy indicated by elevated chlorophyll concentrations and increased carbon uptake rates up to three times as high as in surrounding waters. Carbon uptake below the euphotic zone correlated to the presence of a specific high-light ecotype of Prochlorococcus, which is usually underrepresented in the ETNA. Our combined data indicate that high primary production in the eddy fuels export production and the presence of a specific microbial community responsible for enhanced respiration at shallow depths, below the mixed layer base. Progressively decreasing O2 concentrations in the eddy were found to promote transcription of the key gene for denitrification, nirS, in the O2-depleted core waters. This process is usually absent from the open ETNA waters.
In the light of future ocean deoxygenation our results show exemplarily that even distinct events of anoxia have the potential to alter microbial community structures and with that critically impact primary productivity and biogeochemical processes of oceanic water bodies
Basin-scale pCO2 maps estimated from ARGO float data: A model study
A novel method for mapping surface pCO(2) on a basin scale using ARGO floats is presented and tested in the framework of an eddy-resolving biogeochemical model of the North Atlantic. Voluntary observing ship (VOS) and ARGO float coverage of the year 2005 is applied to the model to generate synthetic "observations." The model-generated VOS line "observations'' of pCO(2), SST, and SSS form a training data set for a self-organizing neural network. The trained neural network is subsequently applied locally to estimate pCO(2) from the model-generated ARGO float SST and SSS data. The local pCO(2) estimates at the simulated float positions are extrapolated using objective mapping. The accuracy of the nearly basinwide pCO(2) estimates is assessed by comparing against the pCO(2) output of the model that serves as synthetic "ground truth.'' For an ARGO float coverage of the year 2005, the resulting monthly mean pCO(2) maps cover 70% of the considered area (15 degrees N to 65 degrees N) with an RMS error of 15.9 mu atm. Compared to remote sensing-based estimates that suffer from large regional gaps in optical satellite data coverage, the RMS error in reproducing the annual cycle of pCO(2) can be reduced by 42% when the more evenly distributed ARGO float-based data are used
High anthropogenic carbon content in the eastern Mediterranean
This work presents data of dichlorodifluoromethane (CFC-12), dissolved inorganic carbon and total alkalinity from a cruise to the Mediterranean Sea during October–November 2001, with the main focus on the CFC-12 data and on the eastern basin. Using the transit time distribution method, the anthropogenic carbon concentrations in the basin were estimated. Results were cross-checked with a back-calculation technique. The entire water column of the Mediterranean Sea contains anthropogenic CO2, with minimum concentrations of 20.5 μmol kg−1 (error range: 16.9–27.1 μmol kg−1) in the most eastern part of the basin at intermediate depths, where the waters' mean age is >130 yr. Column inventories of up to 154 mol m−2 (132–179 mol m−2) are found and a total inventory of 1.7 Pg (1.3–2.1 Pg) of anthropogenic carbon in the Mediterranean Sea was estimated. There is a net flux of 38 Tg yr−1 (30–47 Tg yr−1) of dissolved inorganic carbon through the Strait of Gibraltar into the Atlantic Ocean and an opposite net flux of 3.5 Tg yr−1 (−1.8–9.2 Tg yr−1) of anthropogenic carbon into the Mediterranean Sea
Ship-Based Repeat Hydrography: A Strategy for a Sustained Global Program."
ABSTRACT Ship-based hydrography is the only method for obtaining high-quality measurements with high spatial and vertical resolution of a suite of physical, chemical, and biological parameters over the full ocean water column, and in areas of the ocean inaccessible to other platforms. Global hydrographic surveys have been carried out approximately every decade since the 1970s through research programs such as GEOSECS, TTO/SAVE, WOCE / JGOFS, and CLIVAR. It is time to consider how future surveys can build on these foundations to create a coordinated network of sustained ship-based hydrographic sections that will become an integral component of the ocean observing system. This white paper provides scientific justification and guidelines for the development of a regular and coordinated global survey
Uptake and sequestration of atmospheric CO2 in the Labrador Sea deep convection region
The Labrador Sea is an important area of deep water formation and is hypothesized to be a significant sink for atmospheric CO2 to the deep ocean. Here we examine the dynamics of the CO2 system in the Labrador Sea using time-series data obtained from instrumentation deployed on a mooring near the former Ocean Weather Station Bravo. A 1-D model is used to determine the air-sea CO2 uptake and penetration of the CO2 into intermediate waters. The results support that mixed-layer pCO2 remained undersaturated throughout most of the year, ranging from 220 μatm in mid-summer to 375 μatm in the late spring. Net community production in the summer offset the increase in pCO2 expected from heating and air-sea uptake. In the fall and winter, cooling counterbalanced a predicted increase in pCO2 from vertical convection and air-sea uptake. The predicted annual mean air to sea flux was 4.6 mol m−2 yr−1 resulting in an annual uptake of 0.011 ± 0.005 Pg C from the atmosphere within the convection region. In 2001, approximately half of the atmospheric CO2 penetrated below 500 m due to deep convection
- …