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[1] A novel method for mapping surface pCO2 on a basin scale using ARGO floats is
presented and tested in the framework of an eddy-resolving biogeochemical model of the
North Atlantic. Voluntary observing ship (VOS) and ARGO float coverage of the year 2005
is applied to the model to generate synthetic ‘‘observations.’’ The model-generated VOS
line ‘‘observations’’ of pCO2, SST, and SSS form a training data set for a self-organizing
neural network. The trained neural network is subsequently applied locally to estimate pCO2

from the model-generated ARGO float SST and SSS data. The local pCO2 estimates at the
simulated float positions are extrapolated using objective mapping. The accuracy of the
nearly basinwide pCO2 estimates is assessed by comparing against the pCO2 output of the
model that serves as synthetic ‘‘ground truth.’’ For an ARGO float coverage of the year
2005, the resulting monthly mean pCO2 maps cover 70% of the considered area (15!N to
65!N) with an RMS error of 15.9 matm. Compared to remote sensing-based estimates
that suffer from large regional gaps in optical satellite data coverage, the RMS error in
reproducing the annual cycle of pCO2 can be reduced by 42% when the more evenly
distributed ARGO float-based data are used.

Citation: Friedrich, T., and A. Oschlies (2009), Basin-scale pCO2 maps estimated from ARGO float data: A model study, J. Geophys.
Res., 114, C10012, doi:10.1029/2009JC005322.

1. Introduction

[2] The ocean is estimated to have taken up about 40% of
the carbon dioxide (CO2) emissions released to the atmo-
sphere through anthropogenic activities since the beginning
of the industrial revolution [Sabine et al., 2004]. In the last
decades large efforts have been undertaken to achieve a
reliable and precise quantification of the marine carbon
uptake, its temporal fluctuations, and its spatial patterns. To
this extent, automated instruments on board Voluntary
Observing Ships (VOS) measure partial pressure of CO2

(pCO2) at the ocean’s surface. They have provided substan-
tial quantitative information since detailed knowledge about
the atmosphere-ocean pCO2 difference is, together with the
gas transfer velocity, needed for a direct calculation of air-to-
sea CO2 fluxes. However, seawater pCO2 is highly variable
in time and space due to changes in solubility, mainly driven
by temperature, and marine biological processes altering the
total dissolved inorganic carbon (DIC) content of the water.
VOS line coverage depends on commercial ship tracks (and
funding) rather than on observational requirements, and
therefore results in an uneven coverage of the ocean surface
that is not well suited for interpolation and extrapolation to
basin-scale pCO2 maps.

[3] A first attempt to overcome the problem of large data
gaps between the individual VOS lines was to make use of
satellite data of sea surface temperature (SST) and surface
chlorophyll. In a pilot study, Friedrich and Oschlies [2009]
showed that for an assumed perfect satellite coverage, a neu-
ral network trained with VOS line data could yield monthly
pCO2 estimates with an RMS error of about 19 matm. When
gaps in the satellite optical coverage due to clouds and low
irradiation at high latitudes in winter were taken into account
and interpolated using climatological values for surface
temperature and chlorophyll, the RMS error increased to
about 21 matm.
[4] The above study motivated the search for a more

evenly distributed data set that contains some information
that can be correlated with surface water pCO2, an obvious
choice being the set of ARGO floats. There are currently
more than 3300 ARGO floats operating in the ocean
(www.argo.ucsd.edu). Current ARGO floats do not measure
pCO2 but they deliver relatively evenly distributed measure-
ments of sea surface temperature (SST) and sea surface
salinity (SSS) with a temporal resolution of about 10 days.
Additionally, depth profiles of temperature and salinity can
be used to calculate mixed layer depth (MLD). The ARGO
floats thereby provide access to some parameters controlling
pCO2 variability at the ocean’s surface without being subject
to previously mentioned problems typically associated with
remote sensing of SST and chlorophyll (Chl). In the present
study we investigate to what extent the purely physical
information provided by current ARGO floats can be
used to estimate surface water pCO2. This is investigated in
the framework of an eddy-resolving biogeochemical ocean
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model combined with realistic sampling statistics of VOS
lines and ARGO floats. Simulated VOS line observations of
pCO2, SST and SSS are utilized to train a self-organizing
neural network that is subsequently applied to simulated
ARGO float data in order to derive nearly basinwide monthly
mean maps of surface pCO2 for the North Atlantic.
[5] The paper is organized as follows: In the subsequent

section we present the high-resolution biogeochemical cir-
culation model and validate the model data against observa-
tions. Section 3 deals with the neural network and the
objective mapping. Our results are presented and discussed
in section 4. Section 5 summarizes our results.

2. Model Configuration and Validation

[6] A pelagic nitrogen-based nutrient-phytoplankton-zoo-
plankton-detritus ecosystem model [Oschlies and Garçon,
1999] is coupled to an eddy-resolving regional ocean general
circulation model of the North Atlantic. Dissolved inorganic
carbon and dissolved oxygen are coupled to nitrogen via the
Redfield ratios, alkalinity is diagnosed from a regional fit to
salinity. For details, see Eden and Oschlies [2006]. The
underlying regional ocean circulation model is based on
MOM2 [Pacanowski, 1995]. The model domain spans the
Atlantic Ocean from 18!S to 70!N at a horizontal resolution
of 1/12! ! 1/12! cos(latitude) and 45 vertical geopotential
levels ranging from 10 m thickness near the surface to 250 m
near the maximum depth of 5500 m. Surface boundary
forcing consists of monthly mean wind stress and a Haney-
type heat flux condition as given by Barnier et al. [1995]. For
the fresh water forcing a relaxation of the model surface
salinity to monthly climatology provided by Levitus [1982] is
used with a timescale of 30 days. In order to pragmatically
account for the presence of sea ice, air-sea fluxes of heat,
CO2, and O2 (but not of momentum) are set to zero whenever
surface temperature falls below "1.8!C. Subgrid-scale
parameterizations are biharmonic friction and diffusion (with
biharmonic coefficients of 0.8 ! 1010 m4/s for diffusion and
2 ! 1010 m4/s for viscosity) and a level-1.5 closure scheme
for vertical turbulent mixing following Gaspar et al. [1990].
[7] Initial conditions for nitrate are taken from Conkright

et al. [2002] and for dissolved inorganic carbon from the
preindustrial estimate of the GLODAP data set [Key et al.,
2004]. The atmospheric pCO2 remains on a preindustrial
level, but varies seasonally and latitudinally according to a
nonlinear fit to estimates by Conway et al. [1994].
[8] The eddy-resolving coupled biogeochemical-physical

model is integrated over a 10 year spin-up period, and model
data used here for simulating VOS line and ARGO float-
based observations are taken from the model year 11.
[9] At Bermuda the annual cycle of pCO2 for the reference

year is in good agreement with the mean annual cycle
observed at BATS (Figure 1a), although the model over-
estimates the amplitude of the annual cycle by about 10 matm.
In a basinwide comparison of the simulated annual variance
to the Takahashi climatology [Takahashi et al., 2008] the
general patterns are well reproduced for the subpolar North
Atlantic (Figures 1c and 1d) showing a small annual variance
for the region 45!N to 55!N and a significantly larger one
further north. Overall the model overestimates the annual
variance almost everywhere. For example, for the region
45!N to 65!N this overestimate amounts to about 36%

(6 matm). This discrepancy remains essentially unchanged
if we map the model monthly means onto the coarser grid
of the Takahashi climatology before computing the annual
variance.
[10] In the subtropics and in the North Atlantic Current

region a significantly larger amplitude in the annual cycle
is found for simulated pCO2 (Figures 1b–1d) although the
annual cycles for observed and modeled SST are almost
identical. One possible explanation for this overestimated
amplitude in the simulated annual cycle of surface pCO2 is
the use of a fixed Redfield stoichiometry by the biogeochem-
ical model. Models have failed to reproduce the observed
summer drawdown of dissolved inorganic carbon that occurs
at Bermuda in the absence of significant nutrient supply,
unless a variable carbon-to-nitrogen stoichiometry specifi-
cally for the dissolved organic matter is taken into account
[Anderson and Pondaven, 2003]. A related decoupling of
carbon and nitrogen dynamics has also been observed at
higher latitudes during summer, when the drawdown of
dissolved inorganic carbon can considerably exceed the
Redfield equivalent of the drawdown of dissolved inorganic
nitrogen [Körtzinger et al., 2001].We therefore speculate that
the absence of a parametrization of non-Redfield processes in
our model is at least partly responsible for the overestimated
pCO2 variance in large parts of the subtropical and mid-
latitude North Atlantic. The lack of a DOC-generated late-
summer pCO2 drawdown leads to an overestimation of the
pCO2 summer-maximum as well as to an associated under-
estimation of entrainment of DIC-rich waters in winter.
[11] For a reliable methodological study the variability of

simulated pCO2 and simulated related parameters must be
representative of the variability of the real data. In our
previous study [Friedrich and Oschlies, 2009] it was shown
that the temporal variability along the VOS cruise tracks of
carcarrier M/V Falstaff in the years 2002/2003 [Lüger et al.,
2004] was similar for observed and model-simulated pCO2.
Autocorrelation scales for SST were found to be larger than
those of pCO2 both in the observations and in the model.
However, along-track decorrelation scales for simulated
pCO2 (decorrelation scale of 59 km) were found to be slightly
larger compared to observations (43 km) supposably due to
the absence of a diurnal cycle and the use of climatological
forcing in the model which leads to less small-scale variabil-
ity in the simulated fields.
[12] For the physical model fields, eddy energy spectra

were calculated by Eden [2007]. In the subpolar North
Atlantic, simulated eddy kinetic energy was found to have
a maximum at a marginally smaller scale than in the obser-
vations. Overall, the simulated energy spectra and corre-
sponding length scales, as well as their lateral variations,
were found to be in remarkably good agreement with
observations.

3. Data and Methods
3.1. Self-Organizing Neural Network

[13] In the year 2005 approximately 740,000 VOS line
measurements of pCO2, SST and SSS were gathered in the
area 10!S to 70!N (#our model domain). As shown by
Lefèvre et al. [2005] and Friedrich and Oschlies [2009] these
observations can be used for the training of a self-organizing
map (SOM) which, in turn, can be used to estimate pCO2
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from related parameters such as SST and SSS over the area
represented by the training data. SOMs are a subtype of
neural networks. The SOMused here is the same as the neural
network used in the work of Friedrich and Oschlies [2009].
SOMs can recognize relationships in the data during the
training process and are able to associate an input vector (here
SST, SSS, position, time) with a target value (here pCO2). In
our case, simulated VOS line samples of SST and SSS and
corresponding latitude, longitude, and day of the year are
used to form a five-dimensional parameter space representa-
tion of simulated VOS line samples of pCO2 in the training
process (Figures 2a–2d). After the second step of the training
process, pCO2 values from the training data set are assigned
to the SOM following a minimum distance criterion between
SOM and training data vectors. Thus the pCO2 values in the
SOM form a discrete net over the training data in which the
grade of discretization (and hence the resolution) depends on
the training data density (Figure 2e). In the application of the
SOM, an input vector (here consisting of month, latitude,
longitude, SST, SSS) is associated with the pCO2 value of the
best matching vector (minimum distance criterion) of the

SOM’s parameter space representation (month, latitude,
longitude, SST, SSS). A more detailed description of the
training process and the functioning of the SOM can be found
in the works of Kohonen [1982], Lefèvre et al. [2005] and
Friedrich and Oschlies [2009].
[14] Surface water pCO2 is, besides its dependence on sea

level pressure, a function of DIC, total alkalinity, SST and
SSS. Because for any individual ocean basin total alkalinity
can, to good accuracy, be estimated from SSS using a
nonlinear empirical fit [e.g., Eden and Oschlies, 2006],
ARGOSSTand SSS data already provide substantial (though
local) information about parameters that determine pCO2. In
addition to SST and SSS, we here use the position and the
month of the respective data points. Even though their use
appears unfounded since month, latitude and longitude have
no direct impact on pCO2, the SOM can exploit this as
information about different pCO2 dynamics in different
regions or seasons respectively and about an underlying
background pCO2 field and which is then altered by SST
and SSS. Thereby the training of the SOM with physical
input data implicitly accounts for biological processes that

Figure 1. (a) Seasonal cycle (annual mean removed) of observed (solid) and model-generated (dotted)
oceanic pCO2 at Bermuda. (b) Seasonal cycle (annual mean removed) of observed [Takahashi et al., 2008]
(solid) and model-generated (dotted) oceanic pCO2 averaged over 15!N to 65!N. Annual variance of
(c) observed [Takahashi et al., 2008] and (d) model-generated pCO2 in matm. Annual variance of model-
generated data was calculated from monthly mean model data. Bermuda pCO2 data were kindly provided
by Niki Gruber. Note the preindustrial setup of the model.
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affect pCO2 and that are, in turn, ultimately driven by the
physical environment. Although there is no direct functional
form available to relate biological carbon uptake to physical
variables, the training process allows the SOM to extract a
substantial part of the net effect of physics and biology on
surface pCO2 for given SST, SSS and space-time coordinates.
A limitation of the training process to SST and SSS would
cause substantially larger mapping errors. Obviously, the
information about the location and time of the SST and
SSSmeasurements contains useful information about surface
pCO2 even for a data set taken from an eddy-resolving model
with intense small-scale variability.

3.2. Objective Mapping

[15] VOS line pCO2 observations and pCO2 estimates at
ARGO float positions provide a patchy view, with, however,
approximately uniform spatial coverage of North Atlantic
surface pCO2. As surface water pCO2 is subject to high
spatial variability, any interpolation or extrapolation to sur-
rounding areas has to account for the typical scales of this
variability.
[16] In the present study, a simple spatial objective analysis

routine was used to obtain (almost) basin-scale estimates
of surface pCO2. For each month, all simulated VOS line
observations and ARGO-based estimates of pCO2 were
interpolated monthly to a 1/2! ! 1/2! grid using a simple
Gaussian weighting based on autocorrelation scales derived
from observations by Li et al. [2005]. A cutoff radius of 2!
was chosen, following Li et al. [2005] who found minimum
spatial autocorrelations of#0.2 for lags of 140 km to 200 km
for pCO2 measurements in the North Atlantic. For the
influence radius (Rinf) we use a value of 1/2! which corre-
sponds to a mean autocorrelation value of 0.5 [Li et al.,
2005]. We are aware of the problem that using a constant
cutoff and influence radius neglects any regional differences
in spatial variability, but so far the sparseness of pCO2

observations does not allow reliable estimates of regional
autocorrelation lengths on a monthly timescale. The Gauss-
ian weights (ki) for all data within the cutoff radius are then
calculated by:

ki ¼
e
" di

Rinf

! "2

ffiffiffiffiffiffi
2p

p : ð1Þ

with (di) being the distance between the grid point and the ith
data point within the cutoff radius.
[17] Calculating decorrelation lags in time on a monthly

scale would require several months long uninterrupted time
series of in situ pCO2 data. As reported by Li et al. [2005], not
even the Bermuda time series (Hydrostation ‘‘S’’ and BATS)
is sufficient for this analysis. Although temporal decorrela-
tion scales (and hence temporal cutoff radii) could have been
derived from our eddy-resolving model, in the absence of
validation data no attempt has been made to interpolate
samples in time other than binning all data available in a
calendar month into monthly means.

4. Results and Discussion

[18] The VOS line coverage available for the year 2005
could already ensure a monthly monitoring along the route
UK-Caribbean, and also between the North Sea and the
southern tip of Greenland. Furthermore, pCO2 data were
gathered along several transects between the northeastern
United States and Iceland and between the UK and Cape
Town. However, when simulating this VOS line coverage in
the model and extrapolating the model-generated ‘‘observa-
tions’’ using an objective mapping method with a 2! cutoff
scale derived from the work of Li et al. [2005] approximately
70% of the region 15!N to 65!N remains uncovered in the

Figure 2. Formation of a SOM. (a) Distribution of SST and SSS in model-generated VOS line data of the
year 2005. (b) Randomly initialized SOM network. (c and d) Inflation during training process. (e) Final
SOM network with assigned pCO2 values in matm. Dimension of the SOM was reduced for illustration to
SST and SSS only. Note the preindustrial setup of the model.
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monthly maps. In our simulation this insufficient and
unrepresentative data coverage leads to a large RMS error
in reproduction of the annual cycle of basin mean pCO2 as
well as a large deviation from the annual mean of basin
averaged pCO2 (Table 1 and Figure 3). Thus relying
exclusively on (extrapolated) VOS line pCO2 data impedes
reliable estimates of basinwide pCO2.
[19] In a first attempt we assessed the potential of filling

in areas not covered by extrapolated VOS line observations
with climatological values. Climatological pCO2 was simu-
lated on a grid of 4! ! 5! resolution (as originally used by
Takahashi et al. [1997]) by amodel run with slightly different
forcing (daily forcing for the considered year instead of
monthly climatological mean forcing as described in the
work of Eden and Jung [2006]) to account for possible biases
in our climatology. In order to simulate the impact of
uncertainties in the climatological data sets, a second ‘‘cli-
matology’’ was derived from the first one by simply doubling
the difference between the model-generated climatological
and the model-generated ‘‘true’’ pCO2 value for every month
at every grid point. Although this analysis cannot provide a
reliable error estimate, it helps to illustrate the error sensitivity
due to uncertainties in the pCO2 climatology. The range
the of basinwide RMS error associated with these two
climatologies accounts for about 10 matm indicating that

the quality of the pCO2 fields used as missing data replace-
ment is crucial even for the, until then, unprecedented VOS
line coverage of the year 2005.
[20] In addition to the regional high-density coverage of

pCO2 measurements achieved by VOS lines, ARGO floats
provide a large number of approximately evenly distributed
sampling points on a global scale. For the considered area
(15!N to 65!N) the number of ARGO surface sampling
points increased from 7195 in the year 2004 and 8277 in
2005, to 10445 for 2006. To evaluate the potential of float-
based pCO2 estimates to extend the restricted VOS line-based
coverage, the self-organizing neural net was trained with the
model-generated VOS line ‘‘observations’’ of SST, SSS and
pCO2 of the year 2005 and applied to the simulated ARGO
float measurements of SST and SSS of the same year. The
local pCO2 estimates were extrapolated by objective map-
ping with a 2! cutoff and a 0.5! influence radius and
subsequently used to fill in regions not covered by extrapo-
lated VOS lines observations. This combination of extrapo-
lated model-generated ‘‘observations’’ and float-based
estimates of pCO2 increases the monthly coverage of the
region 15!N to 65!N to approximately 70%.
[21] Figure 3 and Table 1 respectively compare the obser-

vational coverage and accuracy in the reproduction of the
pCO2 annual cycle and annual mean pCO2 for extrapolated

Figure 3. Annual cycle of basin mean (15!N to 65!N) pCO2 in matm. (solid) Model-generated ‘‘true’’
annual cycle of pCO2. (dashed) Extrapolated model-generated VOS line data of the year 2005. (dotted)
Mapping based on ARGO float data of SSTand SSS and extrapolated VOS line data. Note the preindustrial
setup of the model.

Table 1. Seasonal Spatial Coverage of pCO2 Estimates, Mean RMS Error for Extrapolated Model-Generated VOS Line ‘‘Observations’’
of the Year 2005 and Float-Based Mapping of pCO2, RMS Error in Reproduction of Basin Mean (15!N to 65!N) pCO2 Annual Cycle, and
Deviations From Annual Mean pCO2

Extrapolated VOS
Line Data

ARGO Float-Based
Mapping

Coverage 15!N:40!N 40!N:65!N 15!N:40!N 40!N:65!N
Spring (MAM) 25.3% 42.0% 67.0% 79.3%
Summer (JJA) 22.0% 38.2% 62.7% 78.8%
Fall (SON) 26.3% 42.3% 64.7% 80.0%
Winter (DJF) 19.5% 36.2% 64.5% 79.5%

Mean RMS error of pCO2 over area covered by estimates 14.4 matm 15.9 matm
RMS error of annual cycle of basin mean (15!N:65!N) pCO2 (see Figure 3) 5.02 matm 2.01 matm
Annual mean of simulated ‘‘true’’ pCO2 " annual mean of estimated pCO2 (15!N:65!N) 2.21 matm "0.03 matm
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VOS line data and extrapolated float-based estimates. Even
though extrapolated VOS line observations yield good pCO2

estimates for the area covered by the objective analysis, their
sparse spatial and temporal coverage leads to a lack of
representativeness of the entire basin. ARGO float-based
pCO2 estimates ensure a more accurate reproduction of both
the annual pCO2 cycle and the annual mean pCO2 map.
Outside the ice-covered areas, their observational coverage is
independent of season, relatively evenly distributed and, for
the year 2005, turns out to be representative of the basin
considered.
[22] The distributions of estimated and model-generated

‘‘true’’ pCO2 values as well as the RMS errors for both the
SOM-based mapping at the floats’ positions and the extrap-
olated estimates are shown in Figure 4. The SOM-based
pCO2 estimate results in a RMS error of 16.1 matm with
respect to the model’s ‘‘true’’ pCO2 at the individual float
positions. This is not markedly altered by the subsequent
interpolation (Figures 4a and 4b) onto the 1/2! ! 1/2! basin-

scale grid. For simulated VOS lines (Figure 4c, solid line),
basin wide modeled pCO2 (dash-dot) and simulated ARGO
floats (dotted) most pCO2 values are located in the interval of
230–330 matm (note the preindustrial setup of the model). In
this range, resolution of the SOM is best and the RMS errors
resulting from the application of the SOM are found to be
minimum. Largest RMS errors occur for pCO2 < 200 matm
and for >400 matm, which are not well represented by the
training data set of simulated VOS data. Outside the range of
the training data, lower pCO2 values tend to be estimated too
high and higher pCO2 values tend to be estimated too low
(Figure 4d), a phenomenon already reported in the applica-
tion of a SOM to simulated satellite data [Friedrich and
Oschlies, 2009].
[23] Figure 5 illustrates the seasonally averaged RMS error

for the float-based pCO2 estimates. It turns out that areas
being most crucial for the North Atlantic carbon uptake, i.e.,
the Labrador Sea, the North Atlantic Current, and the West
African upwelling region are covered by the present method

Figure 4. Comparison of simulated and estimated pCO2 in numbers of data for (a) estimates at ARGO
float positions and (b) extrapolated estimates (not area-weighted). The area-weighted basin mean RMS
error associated with Figure 4b amounts to 15.9 matm. (c) Number of values in modeled pCO2 (dash-dot),
model-generated VOS lines of the year 2005 (solid), and model-generated ARGO floats (dotted). RMS
error in matm versus modeled pCO2 in matm (5 matm intervals) for estimates at ARGO float positions
(crosses) and extrapolated estimates (diamonds). (d) Mean error in matm versus modeled pCO2 in matm
(5 matm intervals) for estimates at ARGO float positions (crosses) and extrapolated estimates (diamonds).
Note the split y axis in Figure 4d and the preindustrial setup of the model.
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throughout the entire year. Only for the Gulf of Mexico
and off the South American coast are no estimates available.
The RMS error patterns are similar to those presented by
Friedrich and Oschlies [2009] for pCO2 estimates based on
remote sensing data of SST and Chl. Largest errors are found
near the Grand Banks in summer and in the West African
upwelling region caused by a high spatial variability of pCO2

which cannot be reproduced by the SOM.

4.1. Comparison to Remote Sensing-Based Mapping

[24] The methodological study by Friedrich and Oschlies
[2009] showed that a basinwide view on pCO2 can be
obtained by combining VOS line observations and remote
sensing data of SST and chlorophyll using neural network-
based mapping. Besides the still insufficient VOS line
coverage, one crucial limiting factor of this method turned
out to be the lack of optical coverage in the remote sensing of
Chl. The availability of remotely sensed Chl north of 50!N
drops to zero between November and February and reaches
availabilities of more than 15 days per month in only a few
parts of the basin for every month of the year. This uneven
distribution of data gaps necessitates a replacement of miss-
ing data, e.g., with climatological SST and Chl values.
Unfortunately, this induces significant biases in the monthly
mean maps.
[25] Figure 6 compares the annual cycles of CO2 fluxes

derived from the different pCO2 estimates using the piston
velocity formulation of Wanninkhof [1992]. Besides the
model’s ‘‘true’’ pCO2 field, these include remote sensing-
based pCO2 estimates in which gaps in optical satellite
coverage were replaced by climatological values of SST
and Chl [Friedrich and Oschlies, 2009] and the ARGO
float-based mapping of this study. Results are shown for
different latitudinal bands of the basin. For all latitudinal
bands the RMS errors in the estimated annual cycle of CO2

fluxes are smaller for the float-based mapping compared to
the remote sensing-based one. Particularly noticeable is the
improvement in the northernmost region in late winter and
spring time. The error is also reduced substantially in the
subtropical North Atlantic between 25!N and 45!N. The
RMS error in the basinwide annual cycle of pCO2 can be
reduced by 42% and the deviation from the simulated ‘‘true’’
mean pCO2 and mean CO2 flux is decreased by 38%,

although this effect is hardly visible in the basinwide RMS
error of CO2 fluxes. However, the float-based mapping can
achieve a good reproduction of the annual cycle of basinwide
CO2 fluxes through a good performance in all parts of the
basin, whereas the remote sensing-based mapping partly
benefits from a fortuitous canceling of errors over the basin.
[26] The remote sensing-basedmapping as presented in the

work of Friedrich and Oschlies [2009] and the ARGO-based
method presented here in principle have a similar potential
for estimating pCO2 and CO2 fluxes in all areas in which both
ARGO and remote sensing data are available. Because of the
good spatial coverage of the ARGO floats, the ARGO-based
pCO2 maps reach essentially the same accuracy as one could
reach by remote sensing if there were not data gaps due to
clouds or low solar irradiation at high latitudes in winter.
The advantage over remote sensing-based mapping is thus
offered by the relatively uniform and global data coverage of
the ARGO floats. The impact of uncertainties on pCO2

estimates can be large when gaps in the satellite coverage
must be filled with climatological values of SSTand Chl. For
the currently available ARGO float coverage, float-based
estimates allow for more profound estimates since they
further reduce the area over which no information about
pCO2-related properties is available.
[27] The results presented here are not attained by a

fortunate distribution of sampling points but are nearly
identical for simulating the coverage of the years 2004,
2005 and 2006. It is hoped that at least a similar coverage
will be obtained by the ongoing ARGO as well as follow-on
projects in the future.

4.2. Potential Benefit of Mixed Layer Depth
and Chlorophyll Observations

[28] In addition to the relatively evenly distributed hori-
zontal sampling points, ARGO floats also provide informa-
tion about the vertical dimension. Depth profiles of SST and
SSS can be used to calculate mixed layer depth (MLD). The
use ofMLD as training parameters for the SOMhas also been
simulated in our methodological study. MLD can be derived
from ARGO float profiles, but there is still no validated
technique to estimate MLD in the open ocean or along VOS
line tracks. An attempt to use MLD from ARGO floats being
close (in time and space) to VOS lines did not succeed. The

Figure 5. Seasonal mean RMS error in matm and number of available ARGO float samples for mapping
based on VOS lines and ARGO float coverage of the year 2005. (white lines and dots) Corresponding
seasonal VOS lines and ARGO float positions of the year 2005.
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amount of training data is either reduced drastically by setting
the conditions for ‘‘being close to VOS lines’’ to small limits,
or the training data becomes contaminated with significant
errors in MLD. For our eddy-resolving model simulation, a
window of 1! ! 1! in space and two days in time already
resulted in a mean MLD RMS error of 50 meters.
[29] The potential gain of using MLD information, how-

ever, turns out to be small. Assuming that perfect in situMLD
data were available not only at the ARGO sites, but also along
the VOS lines (the latter are needed for training of the SOM),
and using in situ MLD additionally to SST and SSS reduced
the RMS error in reproducing the annual cycle of pCO2 by
about 10%.

[30] At first sight, it might appear incomplete and some-
how unconvincing to estimate pCO2without explicitly taking
the biology into account. Unfortunately, ARGO floats cannot
yet measure biological parameters such as Chl. One currently
would have to rely onChl observations remotely sensed at the
floats’ positions in order to add the biology to the training
parameters. As described in section 4.1, this would necessi-
tate a replacement of missing data due to the limited avail-
ability of satellite Chl observations. The presented method
would lose its major advantage provided by the relatively
uniform data coverage. On the other hand, it should be kept in
mind that in addition to SST and SSS also information about
time and space is used to train the neural network. The SOM

Figure 6. Annual cycle of model-generated ‘‘true’’ (solid) and estimated CO2 fluxes averaged over given
latitude ranges in mol/m2/a. Underlying pCO2 fields correspond to Figure 5 for dashed line or were mapped
from remote sensing of SST and Chl replacing missing data with climatological values for SST and Chl
(dotted line), respectively. Positive values denote fluxes into the ocean. Note the preindustrial setup of the
model.
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can memorize that pCO2 dynamics are different in different
regions and seasons, respectively. Thus biological processes
are to some extent implicitly accounted for via the training
process of the neural network.
[31] In order to estimate the potential benefit of Chl

observations we added a simulation assuming perfect Chl
observations were available at ARGO float positions without
data gaps. In this hypothetical scenario the RMS error in
reproducing the annual cycle of pCO2 was reduced by about
12%.

5. Conclusions

[32] We have developed and analyzed a novel method that
combines VOS line and ARGO float SST and SSS data by a
self-organizing neural network in order to generate nearly
basinwide monthly maps of surface pCO2. In contrast to
remote sensing of SST and Chl, the data coverage is approx-
imately uniform and does not exhibit large data gaps due to
clouds and low solar irradiation. Our results show that about
70% of the considered domain (15!N to 65!N) can be
covered by objectively mapped float-based pCO2 estimates
at monthly intervals with an RMS error of 15.9 matm. The
good coverage allows for reliable pCO2 estimates represen-
tative of the basin mean. Analysis of the estimated pCO2

fields reveals large errors in the North Atlantic Current and
the West African upwelling region. Compared to the remote
sensing-based mapping introduced by Friedrich and
Oschlies [2009], the accuracy in reproducing the annual
cycle of pCO2 and basinwide mean values of pCO2 and
CO2 fluxes can be improved by 42% and 38%when employ-
ing ARGO float SST and SSS data at a coverage obtained in
year 2005. Furthermore, our study shows that the additional
use of Chl or MLD respectively for estimating pCO2 only
results in a minor reduction of the mapping error. Besides the
relatively uniform data coverage it is the nearly basinwide
availability of SSS and SST data in combination with
information about time and position of the data, that allows
the neural net to estimate pCO2 with little loss of accuracy
compared to the case of additional, but as yet hypothetical,
chlorophyll measurements by the ARGO floats.
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