1,054 research outputs found

    Super-poissonian noise, negative differential conductance, and relaxation effects in transport through molecules, quantum dots and nanotubes

    Get PDF
    We consider charge transport through a nanoscopic object, e.g. single molecules, short nanotubes, or quantum dots, that is weakly coupled to metallic electrodes. We account for several levels of the molecule/quantum dot with level-dependent coupling strengths, and allow for relaxation of the excited states. The current-voltage characteristics as well as the current noise are calculated within first-order perturbation expansion in the coupling strengths. For the case of asymmetric coupling to the leads we predict negative-differential-conductance accompanied with super-poissonian noise. Both effects are destroyed by fast relaxation processes. The non-monotonic behavior of the shot noise as a function of bias and relaxation rate reflects the details of the electronic structure and level-dependent coupling strengths.Comment: 8 pages, 7 figures, submitted to Phys. Rev. B, added reference

    Frequency-Dependent Current Noise through Quantum-Dot Spin Valves

    Full text link
    We study frequency-dependent current noise through a single-level quantum dot connected to ferromagnetic leads with non-collinear magnetization. We propose to use the frequency-dependent Fano factor as a tool to detect single-spin dynamics in the quantum dot. Spin precession due to an external magnetic and/or a many-body exchange field affects the Fano factor of the system in two ways. First, the tendency towards spin-selective bunching of the transmitted electrons is suppressed, which gives rise to a reduction of the low-frequency noise. Second, the noise spectrum displays a resonance at the Larmor frequency, whose lineshape depends on the relative angle of the leads' magnetizations.Comment: 12 pages, 15 figure

    Shot noise in tunneling transport through molecules and quantum dots

    Full text link
    We consider electrical transport through single molecules coupled to metal electrodes via tunneling barriers. Approximating the molecule by the Anderson impurity model as the simplest model which includes Coulomb charging effects, we extend the ``orthodox'' theory to expand current and shot noise systematically order by order in the tunnel couplings. In particular, we show that a combined measurement of current and shot noise reveals detailed information of the system even in the weak-coupling limit, such as the ratio of the tunnel-coupling strengths of the molecule to the left and right electrode, and the presence of the Coulomb charging energy. Our analysis holds for single-level quantum dots as well.Comment: 8 page

    Plasmonic Library Based on Substrate-Supported Gradiential Plasmonic Arrays

    Get PDF
    We present a versatile approach to produce macroscopic, substrate-supported arrays of plasmonic nanoparticles with well-defined interparticle spacing and a continuous particle size gradient. The arrays thus present a “plasmonic library” of locally noncoupling plasmonic particles of different sizes, which can serve as a platform for future combinatorial screening of size effects. The structures were prepared by substrate assembly of gold-core/poly(<i>N</i>-isopropylacrylamide)-shell particles and subsequent post-modification. Coupling of the localized surface plasmon resonance (LSPR) could be avoided since the polymer shell separates the encapsulated gold cores. To produce a particle array with a broad range of well-defined but laterally distinguishable particle sizes, the substrate was dip-coated in a growth solution, which resulted in an overgrowth of the gold cores controlled by the local exposure time. The kinetics was quantitatively analyzed and found to be diffusion rate controlled, allowing for precise tuning of particle size by adjusting the withdrawal speed. We determined the kinetics of the overgrowth process, investigated the LSPRs along the gradient by UV–vis extinction spectroscopy, and compared the spectroscopic results to the predictions from Mie theory, indicating the absence of local interparticle coupling. We finally discuss potential applications of these substrate-supported plasmonic particle libraries and perspectives toward extending the concept from size to composition variation and screening of plasmonic coupling effects

    Mutual A domain interactions in the force sensing protein von Willebrand factor

    Get PDF
    The von Willebrand factor (VWF) is a glycoprotein in the blood that plays a central role in hemostasis. Among other functions, VWF is responsible for platelet adhesion at sites of injury via its A1 domain. Its adjacent VWF domain A2 exposes a cleavage site under shear to degrade long VWF fibers in order to prevent thrombosis. Recently, it has been shown that VWF A1/A2 interactions inhibit the binding of platelets to VWF domain A1 in a force-dependent manner prior to A2 cleavage. However, whether and how this interaction also takes place in longer VWF fragments as well as the strength of this interaction in the light of typical elongation forces imposed by the shear flow of blood remained elusive. Here, we addressed these questions by using single molecule force spectroscopy (SMFS), Brownian dynamics (BD), and molecular dynamics (MD) simulations. Our SMFS measurements demonstrate that the A2 domain has the ability to bind not only to single A1 domains but also to VWF A1A2 fragments. SMFS experiments of a mutant [A2] domain, containing a disulfide bond which stabilizes the domain against unfolding, enhanced A1 binding. This observation suggests that the mutant adopts a more stable conformation for binding to A1. We found intermolecular A1/A2 interactions to be preferred over intramolecular A1/A2 interactions. Our data are also consistent with the existence of two cooperatively acting binding sites for A2 in the A1 domain. Our SMFS measurements revealed a slip-bond behavior for the A1/A2 interaction and their lifetimes were estimated for forces acting on VWF multimers at physiological shear rates using BD simulations. Complementary fitting of AFM rupture forces in the MD simulation range adequately reproduced the force response of the A1/A2 complex spanning a wide range of loading rates. In conclusion, we here characterized the auto-inhibitory mechanism of the intramolecular A1/A2 bond as a shear dependent safeguard of VWF, which prevents the interaction of VWF with platelets

    Distraction test of the posterior superior iliac spine (PSIS) in the diagnosis of sacroiliac joint arthropathy

    Get PDF
    BACKGROUND: The sacroiliac joint (SIJ) is a frequently underestimated cause of lower back (LBP). A simple clinical test of sufficient validity would be desirable. The aim of this study was to evaluate the diagnostic value of a new PSIS distraction test for the clinical detection of SIJ arthropathy and to compare it to several commonly used clinical tests. METHODS: Consecutive patients, where a SIJ pathology had been confirmed by an SIJ infiltration were enrolled (case group, 61 SIJs in 46 patients). Before infiltration, patients were tested for pain with PSIS distraction by a punctual force on the PSIS in medial-to-lateral direction (PSIS distraction test), pain with pelvic compression, pelvic distraction, Gaenslen test, Thigh Thrust, and Faber (or Patrick's) test. In addition, these clinical tests were applied to both SIJs of a population of individuals without history of LBP (control group, 64 SIJs in 32 patients). RESULTS: Within the investigated cohort, the PSIS distraction test showed a sensitivity of 100% and a specificity of 89% for SIJ pathology. The accuracy of the test was 94%, the positive predictive value (PPV) was 90% and the negative predictive value (NPV) was 100%. Pelvic compression, pelvic distraction, Gaenslen test, Thigh Thrust, and Faber test were associated with a good specificity (> 90%) but a poor sensitivity (< 35%). CONCLUSIONS: Within our population of patients with confirmed SIJ arthropathy the PSIS distraction test was found to be of high sensitivity, specificity and accuracy. In contrast, common clinical tests showed a poor sensitivity. The PSIS distraction test seems to be an easy-to-perform and clinically valuable test for SIJ arthropathy
    corecore