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We consider charge transport through a nanoscopic object, e.g. single molecules, short nanotubes,
or quantum dots, that is weakly coupled to metallic electrodes. We account for several levels of
the molecule/quantum dot with level-dependent coupling strengths, and allow for relaxation of the
excited states. The current-voltage characteristics as well as the current noise are calculated within
first-order perturbation expansion in the coupling strengths. For the case of asymmetric coupling
to the leads we predict negative-differential-conductance accompanied with super-poissonian noise.
Both effects are destroyed by fast relaxation processes. The non-monotonic behavior of the shot
noise as a function of bias and relaxation rate reflects the details of the electronic structure and
level-dependent coupling strengths.

PACS numbers: 73.63.-b, 73.23.Hk, 72.70.+m

I. INTRODUCTION

The field of molecular electronics1 is driven by the
quest for functional electronic devices that are smaller
than those produced by standard semiconductor technol-
ogy. The microscopic size and the reproducibility in the
production of molecules provide decisive advantages even
if many, identical, molecules should be needed to build
fault-tolerant devices A negative differential conductance
(NDC), a promising feature for functional devices, has
been found recently in organic molecules.2 Furthermore,
many-body effects such as the Coulomb blockade and
Kondo effect, known from semiconductor quantum dots,3

have been observed in molecular devices4,5 and carbon
nanotubes.6,7,8

Since the typical single-particle level spacing of quan-
tum dots (or short nanotubes) is small – often only a frac-
tion of a meV – low temperatures are required for the res-
olution of transport through individual levels. Low tem-
peratures are also helpful for the observation of quantum
or shot noise. For example, at temperatures above 30K
noise transport through molecules between gold break
junctions9 appears to be dominated by 1/f-like noise,
believed to be generated by thermally-induced fluctua-
tions of the gold atoms. Such effects are suppressed at
sub-Kelvin temperatures, at which the shot noise associ-
ated with the discreteness of the charge of the transfered
electrons10 can be detected. Both the current and the
shot noise depend on details of the discrete level spec-
trum and the coupling strengths of these levels to the
electrodes.11,12,13 The combined measurements of current
and shot noise, thus, provide a ’spectroscopic’ tool to gain
information about the level structure.

Negative differential conductance through multi-level
systems can occur when two adjacent levels have dif-
ferent coupling strengths to the leads. Once the level
with weaker coupling is occupied, transport through the

other level is suppressed, which reduces the total cur-
rent. For molecules, it is well known that the coupling
of different molecular orbitals to the electrodes may vary
strongly due to differences in the spatial structure of the
corresponding wave functions.14 In metallic single-walled
nanotubes (SWNTs), two bands cross the Fermi surface
as the doping level is varied. For short tubes, these bands
break up in a set of single-particle levels, separated by a
level spacing δE of about 1 meV or less (see also Ref. 7 for
multi-walled nanotubes). In general, these levels differ in
their spatial structure and coupling strength, particularly
if they derive from two different bands at different points
of the one-dimensional Brillouin zone. For semiconduct-
ing nanotubes similar considerations hold.8 NDC has also
been observed in semiconductor quantum dots.15

To study transport through systems which display a
NDC, we start from an effective model of a few single-
particle levels with couplings to the electrodes which vary
strongly from level to level, and which also may dif-
fer for the source and drain electrodes. Furthermore,
we include the possibility of relaxation among the lev-
els: at finite bias voltage, electrons might enter the
molecule (quantum dot or nanotube) at a high-lying ex-
cited state. Provided that the relaxation is fast as com-
pared to the tunneling, the molecule might relax to the
ground state or other low-lying state before the electron
has the chance to leave the molecule. The relaxation is
accompanied by the emission of a boson, either a pho-
ton or a phonon. Such relaxation processes can have a
strong impact on the negative differential conductance
by destroying the blocking mechanism.14 Related models
(without coupling to a bosonic bath and relaxation) were
studied in Refs. 16,17,18.

The main purpose of this work is to study shot noise
for the model described above in the regime where NDC
might occur. We predict that in the absence of relax-
ation, the NDC is accompanied with super-poissonian
noise. This is formally similar to transport through semi-
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conducting resonant tunneling devices,19 though the ori-
gin of NDC in these devices (chemical potential passes
through the semiconductor band edge) is entirely differ-
ent from the one discussed here. Relaxation processes
enhance the current and reduce the noise in the NDC
regime. The shot noise shows rather rich behavior de-
pending on the coupling and relaxation strength. In par-
ticular, we find that the shot noise is a non-monotonic
function of the relaxation rate. This behavior contrasts
with the current, which monotonically increases as the
relaxation rate becomes larger. We are able to present
analytic results for the shot noise, which might be use-
ful for the interpretation of future experiments. We also
relate our results to models of transport through several
quantum dots.

II. THE MODEL

As a model for electron transport through a molecule
or nanotube with M molecular orbitals (levels) and
Coulomb interaction we consider a generalized Anderson
impurity model coupled to a bosonic bath, described by
the Hamiltonian Ĥ = ĤL+ĤR+ĤM+ĤT,L+ĤT,R+Ĥph

with:

Ĥr =
∑

kσ

ǫkσra
†
kσrakσr, (1)

ĤM =
∑

lσ

ǫlσc†lσclσ + U
∑

l

nl↑nl↓ + Ec(
∑

lσ

nlσ)2(2)

ĤT,r =
∑

lkσ

(trl a
†
kσrclσ + h.c.), (3)

Ĥph =
∑

q

ωqd
†
qdq +

∑

q,σ,l,l′

gl,l′

q (d†q + dq)c
†
lσcl′σ, (4)

where l = 1 . . .M and r = L, R. Here, ĤL and ĤR model
the non-interacting electrons with density of states ρe =
∑

k δ(ω − ǫkr) in the left and right electrode (a†
kσr , akσr

are the Fermi operators for the states in the electrodes).

The molecule term ĤM describes a ”molecule” with M
relevant molecular orbitals of energy ǫlσ and Coulomb

interaction on the molecule (c†lσ , clσ are Fermi operators

for the molecular levels, and nlσ = c†lσclσ is the num-
ber operator). The charging energy Ec accounts for the
classical energy cost to add charge on a confined sys-
tem with many electrons and ions that are not explic-
itly considered in the Hamiltonian. In addition, the
Hubbard-like term with energy U punishes double oc-
cupancy within the same orbital. These two kinds of
interaction terms are the most important parts of the
full two-body interactions present in a real molecule.
Other terms could be considered by much more elabo-
rate models, as done in Ref. 20 for computation of the
I−V characteristics . For the NDC/relaxation effects on
the shot noise that we wish to study, the above simple
molecule model suffices. Tunneling between leads and

molecule levels is modeled by ĤT,L and ĤT,R. The cou-
pling strength is characterized by the intrinsic line width
Γr

l = 2π|trl |
2ρe, where trl are the tunneling matrix el-

ements. In order to allow for relaxation between dif-
ferent molecular levels, we add Ĥph, which describes a
bosonic bath (where d†q, dq are the corresponding Bose
operators) coupled to the molecule by the coupling con-

stants gl,l′

q , l 6= l′. This allows relaxation processes where
electrons on the molecule can change the orbital by emit-
ting or absorbing a boson. Note that a diagonal cou-
pling, l = l′, would not be associated with relaxation
but would give rise to “boson-assisted tunneling” lead-
ing to additional steps in the I − V characteristics when
the boson bath has a discrete spectrum.21,22,23 Since in
the present paper we are not interested in those boson-
assisted tunneling processes, we take into account off-
diagonal coupling contributions only. To be specific, we
assume in the following that the bosonic bath consists
of photons, although vibrational effects due to phonons
could also be described within our model. For simplicity,
we assume the constants gl,l′

q = (1 − δl,l′)gph to be in-
dependent of l, l′ and q, and introduce the coupling αph

as αph(ω) = 2πg2
phρb(ω), where ρb(ω) =

∑

q δ(ω − ωq)
is the density of states of the bosonic bath For the re-
laxation due to photons we choose a power law behav-
ior ρb(ω) ∝ ω3, corresponding to photons with 3 spatial
degrees of freedom. For the case of phonon-mediated re-
laxation, which we are not going to discuss in detail in
the present paper, the density of states is sharply peaked
around the vibration modes of the molecule. The above
model is an extension of the Anderson impurity model
with one level (and in the absence of relaxation effects),
which was described and discussed in Ref. 12.

We are interested in transport through the molecule, in
particular in the current I and the (zero-frequency) cur-

rent noise S. They are related to the current operator Î =

(ÎR − ÎL)/2, with Îr = −i(e/~)
∑

lkσ

(

trl a
†
kσrclσ − h.c.

)

being the current operator for electrons tunneling into
lead r, by I = 〈Î〉 and

S =

∫ ∞

−∞

dt〈δÎ(t)δÎ(0) + δÎ(0)δÎ(t)〉 (5)

where δÎ(t) = Î(t) − 〈Î〉.

III. DIAGRAMMATIC TECHNIQUE

For the calculation of the current I and current noise
S, we use the diagrammatic technique developed in
Ref. 23 and expanded for the description of the noise in
Ref. 12. In lowest-order perturbation theory in the cou-
pling strengths Γ, the following expressions the current
and the noise were found:

I =
e

2~
eTWIpst (6)
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S =
e2

~
eT

(

WIIpst + WIPWIpst
)

. (7)

The bold face indicates matrix notation related to the
molecular state labels χ (for the M level system there are
4M different states). The vector e is given by eχ = 1 for
all χ. The zeroth-order stationary probabilities pst can
be expressed in terms of first-order transition rates Wχ,χ′

(forming a matrix W) between two molecular states χ
and χ′ as:

pst = (W̃)−1v. (8)

The matrix W̃ is identical to W but with one (arbi-
trarily chosen) row χ0 being replaced with (Γ, ..., Γ).
Then the vector v is given by vχ = Γδχχ0

. The to-
tal transition rates Wχ,χ′ (in the absence of relaxation)
are the sum of transition rates associated with electron
tunneling through either the left or the right barrier,
Wχ,χ′ = WR

χ,χ′ + WL
χ,χ′ .

The matrix elements of WI and WII are given by
W I

χ,χ′ = (WR
χ,χ′ − WL

χ,χ′ )(Θ(Nχ − Nχ′) − Θ(Nχ′ − Nχ))

and W II
χ,χ′ = 1

4
(WR

χ,χ′ + WL
χ,χ′ )(1 − 2 δχχ′), where Nχ is

the total number of electrons on the molecule within the
state χ. The indices I or II indicate that one or two
vertices in the corresponding diagram are due to current
operators present in the definition for the current I and
the noise S.

The matrix P is associated with the propagation be-
tween two blocks WI containing one current operator
each. To lowest order in Γ,

P = (W̃)−1Q (9)

with Qχ′χ = (pst
χ′ − δχ′,χ)(1 − δχ′,χ0

), i.e., P is of order

Γ−1, thus leading to a non-vanishing contribution of
the second part in Eq. (7) even in lowest (first) order
perturbation theory in the coupling to the electrodes.
Similar expressions for the calculation of current and
noise were derived by other means by Hershfield et al.

in Ref. 24 and Korotkov in Ref. 25.

In order to include relaxation processes, we need to ex-
tend the theory of Ref. 12 by introducing corresponding

transition rates W ph
χ,χ′ . Assuming weak coupling to the

bosonic bath (in addition to weak tunneling), we only
keep contributions to either first order in αph or to first
order in Γ. The total transition rates are, thus, given by

Wχ,χ′ = WL
χ,χ′ + WR

χ,χ′ + W ph
χ,χ′ , where W ph

χ,χ′ describe

pure relaxation while WL
χ,χ′ and WR

χ,χ′ models pure tun-
neling. The tunneling rates are given by

W r
χ′,χ = 2π

∑

l,σ

[

γ+
rlσ(Eχ′,χ)|〈χ′|c†lσ|χ〉|

2

+ γ−
rlσ(−Eχ′,χ)|〈χ′|clσ|χ〉|

2
]

(10)

for χ′ 6= χ, together with W r
χ,χ = −

∑

χ′ 6=χ W r
χ′,χ, where

γ±
rlσ(Eχ′,χ) = Γl

r/2π f±(Eχ′,χ − µr). The bosonic rates

are

W ph
χ′,χ = 2π

∑

l 6=l̄

b(Eχ′,χ)|〈χ′|c†lσcl̄σ|χ〉|
2. (11)

for χ′ 6= χ, and W ph
χ,χ = −

∑

χ′ 6=χ W ph
χ′,χ, with b(Eχ′,χ) =

αph(Eχ′,χ)/2π nb(Eχ′,χ). Here, f(x) = f+(x) = 1 −
f−(x), nb(x) = n+

b (x) = n−
b (−x) are the Fermi and

Bose functions and Eχ′,χ = Eχ′ − Eχ is the energy dif-
ference between the many-body states χ and χ′. While
the presence of relaxation leads to a modification of pst

and P, the matrices WI and WII are not affected.
The rules for calculating the irreducible blocks W de-

scribing electron tunneling and relaxation are as follows:
1) For a given order k draw all topologically differ-

ent diagrams with 2k vertices connected by k tunneling
(electron) lines or boson (photon) lines (for orders k ≥ 2
both kinds of lines might be contained in a diagram).
Assign the energies Eχ to the propagators, and energies
ωl (l = 1, ..., k) to each one of these lines.

2) For each of the (2k − 1) segments enclosed by two
adjacent vertices there is a resolvent 1/(∆Ej + i0+) with
j = 1, ..., 2k − 1, where ∆Ej is the difference of the left-
going minus the right-going energies.

3) Each vertex containing dot operators Bn (with n
different operator structures) gives rise to a matrix el-
ement 〈χ′|Bn|χ〉, where χ (χ′) is the dot state entering
(leaving) the vertex with respect to the Keldysh contour

(for our model we have: B1 = c†lσ, B2 = clσ, B3 = c†lσcl̄σ).
4) The contribution of a tunneling line of reservoir r

is γ±
rlσ(ωl) = Γl

r/2π f±(ωl − µr), taking the plus-sign
if the line is going backward with respect to the closed
time path, and the minus-sign if it is going forward. The
same way the contribution of a bosonic line is given by
b±(ωl) = αph(ωl)/2π n±

b (ωl).
5) There is an overall prefactor (−i)(−1)c, where c is

the total number of vertices on the backward propaga-
tor plus the number of crossings of tunneling lines (no
bosonic lines) plus the number of vertices connecting the
state d with ↑.

6) Integrate over the energies ωl of the tunneling and
boson lines and sum over all reservoir and spin indices.

IV. RESULTS

In the following we discuss current and shot noise
for the model of Eqs. (1)-(4) with two single-particle
levels (M = 2 → l = 1, 2) in first order perturbation
theory in the tunnel couplings Γr and the coupling αph

to the bosonic bath. We express the different coupling
parameters Γr

l , αph in units of a scale Γ that has the
same order of magnitude as the largest of the tunnel
couplings Γr

l . (In the case of equal tunnel couplings,
the natural choice is ΓR

1 = ΓL
1 = ΓR

1 = ΓL
2 = Γ.) Our

perturbation expansion is valid for temperatures larger
than the tunnel couplings. Throughout this paper,
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we choose kBT = 10Γ. The molecule can acquire 16
possible states, as each level can be either unoccupied,
occupied with spin ↑ or ↓, or doubly occupied. The
system described is characterized by level energies ǫ1 and
ǫ2, the ’Hubbard’ repulsion U and the charging energy
Ec. Furthermore the electron and photon reservoirs
have temperature T (set as T = 0.05meV ) and are
connected to the molecule via the coupling parameters
Γr

l and αph. Transport is achieved by applying a bias
voltage Vbias, which is dropped symmetrically at the
electrode-molecule tunnel junctions, meaning that the
energies of the molecular states are independent of
the applied voltage even if the couplings Γr

l are not
symmetric. The effects of asymmetric voltage drop and
a possible gate voltage are straightforward to antici-
pate, but would only obscure the results presented below.
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FIG. 1: Sketch of a the couplings and processes in the con-
sidered model.

An illustration of the transport situation is shown in
Fig. 1. The Fano factor, which is given by the noise
to current ratio, F = S/2eI, provides additional infor-
mation about transport properties, not contained in the
current-voltage characteristics alone. Therefore, we are
interested in studying its dependence on different cou-
plings to the electrodes, the strength of relaxation, the
Coulomb charging energy, etc. in order to make predic-
tions of the importance of those parameters for a given
experiment.

We focus on the easiest case which exhibits NDC.
The set of energy parameters {ǫ1 = −0.5meV, ǫ2 =
0.5meV, U = 1.5meV, Ec = 1meV}26 describes a
molecule that is uncharged at zero bias, as the energy to
occupy the first single particle level is ǫ1 + Ec = 0.5meV
(state D1). Without coupling to the boson bath and in
contrast to the one level system discussed in Ref. 12 we
find a negative differential conductance (NDC) regime,
see Figure 2, in dependence on the different coupling
strength between the molecular orbitals and the reser-
voirs, as was previously discussed in Refs. 14,16. The
shot noise behaves qualitatively similar, the important
quantitative details are discussed in the following.

If we chose equal tunnel coupling, Γr
l = Γ (solid line),

we find that current and shot noise S increase, each time,
as a new transport ”channel” (controlled by the excita-
tion energies) opens. This leads to plateaus, separated
by thermally broadened steps. The first four plateaus are
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FIG. 2: Current I and shot noise S vs. voltage for kBT =
0.05meV, ǫ1 = −0.5meV, ǫ2 = 0.5meV, U = 1.5meV, Ec =
1meV, symmetric bias (µL = −µR = eV/2) and ΓL

1 = ΓL
2 =

ΓR
1 = Γ. The height of the plateaus labeled by i = 0, 1, 2 are

discussed in the text and depend on the choice of the coupling
parameters. For suppressed coupling ΓR

2 current and shot
noise break down leading to negative differential conductance
(NDC) at a threshold energy. The curves are normalized to
Imax = (e/~)2Γ and Smax = (e2/~)2Γ, respectively.
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FIG. 3: Fano factor F vs. bias voltage for the same param-
eters as in Fig. 2 and various coupling parameters ΓR

2 . The
NDC effect results in a super-poissonian value for the Fano
factor.

shown and discussed in the following. At a bias voltage
of 1mV, sequential transport through the state D1 with
one electron on the lower lying level becomes possible. At
3mV, additionally transport through the D2 state opens
up, with the upper level being occupied with one electron.
The different regions of interest are labeled by Ii, Si with
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i = 0, 1, 2. For a bias voltage above 5mV, transport chan-
nels with two or more electrons on the molecule open up.
In the large-bias regime (not indicated in the plots) and
for symmetric coupling, the values Imax = (e/~)2Γ and
Smax = (e2/~)2Γ are reached. If now the coupling param-
eter ΓR

2 is suppressed with respect to the other couplings,
this leads to suppressed curves for the current and shot
noise in region 2, resulting in NDC at the threshold of
3mV, when the state D2 becomes relevant, see in Fig. 2
for ΓR

2 = 0.1Γ and 0.01Γ. The reason for the NDC is
a combination of the Pauli principle, Coulomb blockade
and suppressed coupling, as discussed in Ref. 14,20. In
our case, an electron, entering the upper molecular or-
bital from the left electrode, cannot leave the molecule,
if the coupling of this orbital to the right electrode is
entirely suppressed. Transport through the lower molec-
ular orbital is also not possible, since the simultaneous
occupation of both orbitals is energetically forbidden in
the considered bias regime. The electron gets stuck in
the upper molecular orbital blocking other electrons from
tunneling through the molecule. Consequently, the cur-
rent collapses.

Since in lowest-order perturbation theory in Γ the
plateau heights are given by the coupling parameters
only, we find, that for ΓR

2 < 2/3Γ NDC can be observed,
whereas the shot noise is suppressed below its lower bias
plateau only, if ΓR

2 < 0.1Γ. This difference can already
give a rough idea about the coupling strength ΓR

2 for a
given set of current and noise measurements. If the shot
noise is sufficiently suppressed in the NDC region, a peak
in the shot noise appears around the resonance energy of
the second level. This peak is due to temperature induced
fluctuations that in certain situations enhance the shot
noise over the surrounding plateau values (where tem-
perature fluctuations are exponentially suppressed). As
the resonance is approached from lower bias, within the
range of temperature broadening the noise ”detects” the
opening of the second transport channel and increases.
If the bias is beyond the resonance, the redistribution of
occupation has taken place and the noise is algebraically
suppressed. The result is the observed peak with width
of the temperature. However, the peak height is only
determined by the coupling parameters and is indepen-
dent of the temperature. The current never shows such a
peak, as it decreases proportional to the loss of occupa-
tion of the first level, the transport channel with ”good”
coupling.

The effect of NDC on the Fano factor, which is given
by F = S/2eI, is shown in Figure 3. At small bias,
eV ≪ kBT , the noise is dominated by thermal noise, de-
scribed by the well known hyperbolic cotangent behavior
which leads to a divergence of the Fano factor.10,27 The
plateau for bias voltages below 1mV (region 0) corre-
sponds to the Coulomb blockade regime, where transport
is exponentially suppressed. In the regions 1 (2) trans-
port through the state D1 (D2) is possible. The sup-
pressed coupling strength ΓR

2 does not affect the plateau
height F1, whereas F2 reaches values larger then 1, and

up to 3.16 This ”super-poissonian” noise (F > 1) is pre-
dicted for ΓR

2 < 0.44Γ. If the bias is larger then 5mV tun-
neling through states is allowed where both orbitals are
occupied simultaneously, i.e. the molecule can be dou-
bly occupied. The Fano factor is sub-poissonian again
(F < 1) in this regime. Comparing the Figures 2 and 3
graphically allows one to determine roughly the strength
of the suppression of ΓR

2 . In general, however, depending
on the underlying energy parameters (giving the ordering
of a sequence of plateaus) and the coupling parameters
(giving their height) other values for the Fano factor are
possible. In the Coulomb blockade regime (region 0),
for example, there can also be super-poissonian noise, if
both energy levels are below the equilibrium Fermi en-
ergy. Super-poissonian noise is also possible for a single
Anderson level, if the spin degeneracy is lifted by a mag-
netic field (in the Coulomb blockade regime) or by ferro-
magnetic leads, see Refs. 28,29. The energy and coupling
parameters can be fully determined only by considering
several transport regimes, e.g. by application of a gate
voltage.

It should be noted that the non-monotonic behavior of
the Fano factor in regions 1 and 2 is entirely due to the
second term of the noise expression Eq. (7) that accounts
for ”propagation” (and transitions) of molecule states be-
tween the two current vertices at different times.16 On
the plateaus of regions 1 and 2 the first term of Eq. (7)
is always (i.e. for any coupling/relaxation parameter val-
ues) identical to the current times the electric charge e.
Therefore, it contributes a term 1/2 to the Fano factor
F = S/2eI.
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FIG. 4: Current I and shot noise S vs. voltage for the same
parameters as in Fig. 2 but fixed coupling ΓR

2 = 0.01Γ. Cou-
pling to a bosonic bath allows for relaxation processes. The
coupling parameter αph which is varied relative to Γ. The
NDC effect is destroyed by strong relaxation.

Let us consider next the effect of relaxation processes
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FIG. 5: Fano factor vs. bias voltage for for the same parame-
ters as in Fig. 4 and various couplings to a bosonic bath αph.
The super-poissonian value of the Fano factor vanishes due to
strong relaxation processes.

on the current and shot noise curves. In Figure 4 we keep
the same set of energy parameters as in Figure 2 and fix
the coupling strength ΓR

2 at 0.01Γ suppressed relatively
to the other molecule-electrode couplings. Now a param-
eter αph describes the coupling of the molecule with a
boson bath. A value of αph = 0.01Γ is below even the
relatively weak dipole coupling of photons to molecule
states of small aromatic molecules such as benzene.20 For
this small photon coupling (solid line) current and shot
noise are still reduced in region 2 relative to the plateau
heights I1 = 1/3 and S1 = 10/27 in region 1. If now
αph increases, we find that both I and S also increase in
the NDC region, at least initially. If the value αph = 2Γ
is exceeded, the NDC is gone (see also Figure 6, dashed
line). The behavior of the shot noise peak at the reso-
nance energy is now further complicated by the effect of
relaxation. The noise value at the resonance energy is
non-monotonic, i.e. it first decreases and then increases
again with increasing relaxation. This is due to redistri-
bution of occupation by the relaxation processes in favor
of the first level.

For our chosen parameters, the value αph = 2Γ is larger
than a reasonable molecule-photon coupling. However,
phonon (vibrational) couplings could easily be strong
enough to achieve such fast relaxation. On the other
hand, molecule vibrations have a discrete spectrum,
much different to the power law assumed in our calcu-
lations. Relaxation due to phonons can be only effective,
if the energies of a phonon and the electronic excita-
tion match within the smearing provided by temperature.
This obviously depends on the details of the molecule and
can not be discussed within the model considered here.
The destruction of NDC by bosonic transition rates is
easily explained. An electron which formerly was stuck
on the upper molecular orbital can now relax onto the
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FIG. 6: Fano factor (left axis), current and shot noise (right
axis) vs. coupling to the bosonic bath for the same set of
parameters as in Figures 4, 5. The values I1, S1, F1 of the first
plateau do not depend on the bosonic coupling parameter,
whereas on second plateau (NDC region) both the shot noise
and the Fano factor show a non-monotonic dependence.

lower molecular orbital, from which tunneling to the right
electrode is possible via the coupling ΓR

1 .

For the Fano factor in Figure 5 an increase of αph leads
to a decreasing value for the plateau F2, which passes
the poissonian value F = 1 at αph ∼ 0.34Γ. Different
to the current, however, the Fano factor does not show
monotonic behavior with increasing αph. The dashed-
dotted line corresponding to αph = 1Γ lies below the
dotted one with αph = 10Γ. The non-monotonic behavior
is even more pronounced for the shot noise. It has a
maximum and a minimum for 0.2 ∼ αph/Γ ∼ 1 before
increasing again at αph > Γ, see Figure 6. The richness
of the noise behavior in the NDC regime might allow a
detailed determination of coupling-parameter values.

Contrary to the (monotonic) αph-dependence of the
current, which can be explained by a redistribution of
occupation probability form the ”blocking” upper level
to the ”conducting” lower level, it is difficult to present a
simple physical picture for the non-monotonic shot noise
behavior in the NDC region. As noted above, it is the
second term of the noise expression Eq. (7) that is respon-
sible for variation of the noise with coupling parameters.
For our set of parameters, the second term of Eq. (7)
has a peak at about αph ∼ 0.16Γ and a minimum at
αph ∼ 1.66Γ, where it almost reaches zero. The increase
of this term at small αph is again explained by the lift-
ing of the blockade, i.e. the redistribution of occupation
probability. The decrease after the maximum is the re-
sult of a (near) cancellation of contributions from the
different states participating in transport. Some of the
state contributions are negative and counter the positive
contributions that produce the maximum. Such a non-
monotonicity with coupling parameters is only possible
(in first order perturbation theory) for a reducible ob-
servable like the shot noise, where aside of the stationary
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occupation probabilities also the ”molecule propagator”
(in the form of P of Eq. 9) plays an important role.

Since in lowest-order perturbation theory temperature
only leads to a thermal broadening of the steps, the
plateau heights in the different transport regimes are
given by the coupling parameters, both the tunnel cou-
pling as well as the relaxation strength. However, note
that the actual relaxation rate depends also on the posi-
tion of the energy levels via the boson density of states.
This will complicate matters in the general case with
many levels, which are not equidistant from each other.

In our case with two levels, we can extract analytical ex-
pressions for the plateau values current, noise and Fano
factor within the low bias transport regimes as indicated
in the Figures 2 to 5. We find for the plateau of the
NDC-region 2 (S2 = 2I2F2)

I2 =
ΓR

1 (αph + ΓR
2 )(ΓL

1 + ΓL
2 )/Γ

2ΓL
2 (αph + ΓR

1 ) + (2ΓL
1 + ΓR

1 )(αph + ΓR
2 )

(12)

for the current and

F2 =
αph(αph + 2ΓR

2 )[(ΓR
1 )2 + 4(ΓL

1 + ΓL
2 )2] + [8ΓL

1ΓL
2 (ΓR

1 − ΓR
2 )2 + 4(ΓL

1ΓR
2 + ΓL

2ΓR
1 )2 + (ΓR

1 ΓR
2 )2]

[2ΓL
2 (αph + ΓR

1 ) + (2ΓL
1 + ΓR

1 )(αph + ΓR
2 )]2

. (13)

for the Fano factor. Since only bosonic transition be-
tween singly occupied levels 1 and 2 are possible in
this bias region, the above expressions include only one
bosonic rate αph(∆E = ǫ2−ǫ1). Since the temperature is
much smaller than ∆E, only relaxation processes matter
for the plateau values. For completeness, we also give the
expressions for the transport regime 1 (transport through
the lower level only). They can be found from the above
by setting the couplings ΓL

2 and αph equal to 0. Then
electrons can never enter the upper level at positive bias,
leading to an effective one level system with the result12

I1 =
2ΓR

1 ΓL
1

(2ΓL
1 + ΓR

1 )

1

2Γ
; F1 =

4(ΓL
1 )

2
+ (ΓR

1 )
2

(2ΓL
1 + ΓR

1 )2
. (14)

The derivation of analytical expressions in the low bias

FIG. 7: Contourplot of the Fano factor (plateau F2) with the

choice ΓL,R
1 = Γ − ΓL,R

2 and αph = 0. The totally symmetric
situation is given for ΓL

1 = ΓR
1 = 0.5Γ. The Fano factor can

become arbitrarily large, if the system is sufficiently asym-
metric.

regime allows us a quick study of current, noise and Fano
factor for arbitrary coupling situations. For the special

situation where ΓL,R
1 = Γ − ΓL,R

2 and αph = 0 the Fano
factor F2 is presented in a contourplot (see Figure 7).
This choice allows the coupling parameters to the left and
right reservoir to vary (independently) between 0 and Γ,
while having the sum of the couplings to each reservoir
fixed. Although not all of the possible coupling situations
can be visualized this way, the following features which
can be extracted from this plot are valid in general: A
super-poissonian Fano factor F > 1 can only be found, if
ΓR

1 6= ΓR
2 and additionally ΓL

1 6= 0, ΓL
2 6= 0. Furthermore

a Fano factor F > 3 is possible only if ΓL
1 6= ΓL

2 besides
the above conditions. In the absence of relaxation pro-
cesses (αph = 0) we can also find a point symmetry of
F2. This symmetry is broken if αph 6= 0, as adsorption
and emission rates of bosons differ due to the boson oc-
cupation factors.

The special case with the settings ΓL
l → ΓL

l /2 de-
scribes spinless transport through a two level-system in
the absence of relaxation processes. This situation was
discussed in Ref. 18 where values of the Fano factor be-
tween 1/2 and 3 were found in the case of equal couplings
ΓL

1 = ΓL
2 . In the case ΓL

1 6= ΓL
2 we can even find Fano

factors with values much larger than 3, as the shot noise
is strongly enhanced compared to a current that is still
sizable itself (not exponentially suppressed), see Figure 7.
This again only happens for a special set of coupling pa-
rameters, thus allowing a detailed analysis of the coupling
parameters, if such high values for the Fano factor were
observed in experiment.

Besides the super-poissonian noise with Fano factors
F > 1 due to positive correlations and values between
1/2 < F < 1 in the sub-poissonian regime, we can also
find values of coupling parameters in which the Fano fac-
tor drops to values below 1/2. This behavior, however,
can only be observed in the presence of relaxations, when
the coupling strength ΓL

1 and ΓR
2 are suppressed relative
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to the other tunnel couplings. If the above couplings
are vanishing, there is only one path for the electrons to
tunnel through the molecule, namely from the left elec-
trode to the upper molecular orbital, then via relaxation
onto the lower molecular orbital until finally the electrons
leave the molecule by tunneling to the right electrode. By
choosing specifically ΓL

1 = ΓR
2 = 0 and ΓR

1 = 2ΓL
2 = αph

the value of the Fano factor can be minimized and is
found to be 1/3. The probabilities to find an unoccu-
pied molecule or an occupied molecule with one electron
in the lower level doublet or in upper level doublet are
all equal in this case (P0 = PD1

= PD2
= 1/3). This

special situation reminds of a system, where a chain of
quantum dots are coupled in series, having interdot tun-
nel couplings of the same size than the couplings of the
chain ends to the leads. For an infinite chain of such dots
(effectively a one-dimensional wire) the Fano factor also
reaches 1/3.30,31

In summary, we have discussed the interplay of
Coulomb interactions, level-dependent coupling and re-
laxation in a model suitable for quantum dots, molecules
and short nanotubes. We find super-poissonian shot
noise in a bias region where the electronic current is
suppressed due to blocking effects. Relaxation due to
bosonic excitations has a strong impact on both current
and shot noise in this region, for example, the shot noise
behaves non-monotonically as a function of the coupling
strength to the bosonic bath. The Fano factor (noise to
current ratio) can become arbitrarily large in the block-
ing regime. In another special set of couplings the Fano
factor can be reduced to 1/3, resembling that of a one-
dimensional wire.
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