We study frequency-dependent current noise through a single-level quantum dot
connected to ferromagnetic leads with non-collinear magnetization. We propose
to use the frequency-dependent Fano factor as a tool to detect single-spin
dynamics in the quantum dot. Spin precession due to an external magnetic and/or
a many-body exchange field affects the Fano factor of the system in two ways.
First, the tendency towards spin-selective bunching of the transmitted
electrons is suppressed, which gives rise to a reduction of the low-frequency
noise. Second, the noise spectrum displays a resonance at the Larmor frequency,
whose lineshape depends on the relative angle of the leads' magnetizations.Comment: 12 pages, 15 figure