2,801 research outputs found

    Nature of the spin dynamics and 1/3 magnetization plateau in azurite

    Full text link
    We present a specific heat and inelastic neutron scattering study in magnetic fields up into the 1/3 magnetization plateau phase of the diamond chain compound azurite Cu3_3(CO3_3)2_2(OH)2_2. We establish that the magnetization plateau is a dimer-monomer state, {\it i.e.}, consisting of a chain of S=1/2S = 1/2 monomers, which are separated by S=0S = 0 dimers on the diamond chain backbone. The effective spin couplings Jmono/kB=10.1(2)J_{mono}/k_B = 10.1(2) K and Jdimer/kB=1.8(1)J_{dimer}/k_B = 1.8(1) K are derived from the monomer and dimer dispersions. They are associated to microscopic couplings J1/kB=1(2)J_1/k_B = 1(2) K, J2/kB=55(5)J_2/k_B = 55(5) K and a ferromagnetic J3/kB=20(5)J_3/k_B = -20(5) K, possibly as result of dz2d_{z^2} orbitals in the Cu-O bonds providing the superexchange pathways.Comment: 5 pages, 4 figure

    Magic Islands and Barriers to Attachment: A Si/Si(111)7x7 Growth Model

    Get PDF
    Surface reconstructions can drastically modify growth kinetics during initial stages of epitaxial growth as well as during the process of surface equilibration after termination of growth. We investigate the effect of activation barriers hindering attachment of material to existing islands on the density and size distribution of islands in a model of homoepitaxial growth on Si(111)7x7 reconstructed surface. An unusual distribution of island sizes peaked around "magic" sizes and a steep dependence of the island density on the growth rate are observed. "Magic" islands (of a different shape as compared to those obtained during growth) are observed also during surface equilibration.Comment: 4 pages including 5 figures, REVTeX, submitted to Physical Review

    Study of the island morphology at the early stages of Fe/Mo(110) MBE growth

    Full text link
    We present theoretical study of morphology of Fe islands grown at Mo(110) surface in sub-monolayer MBE mode. We utilize atomistic SOS model with bond counting, and interactions of Fe adatom up to third nearest neighbors. We performed KMC simulations for different values of adatom interactions and varying temperatures. We have found that, while for the low temperature islands are fat fractals, for the temperature 500K islands have faceted rhombic-like shape. For the higher temperature, islands acquire a rounded shape. In order to evaluated qualitatively morphological changes, we measured averaged aspect ration of islands. We calculated dependence of the average aspect ratio on the temperature, and on the strength of interactions of an adatom with neighbors.Comment: 6 pages, 6 figures. Proceedings of 11-th Symposium on Surface Physics, Prague 200

    Monte Carlo study of Si(111) homoepitaxy

    Full text link
    An attempt is made to simulate the homoepitaxial growth of a Si(111) surface by the kinetic Monte Carlo method in which the standard Solid-on-Solid model and the planar model of the (7x7) surface reconstruction are used in combination. By taking account of surface reconstructions as well as atomic deposition and migrations, it is shown that the effect of a coorparative stacking transformation is necessary for a layer growth.Comment: 4 pages, 5 figures. For Fig.1 of this article, please see Fig.2 of Phys.Rev. B56, 3583 (1997). To appear in Phys.Rev.B. (June 1998

    Vanadium (β-(Dimethylamino)ethyl)cyclopentadienyl Complexes with Diphenylacetylene Ligands

    Get PDF
    Reduction of the V(III) (β-(dimethylamino)ethyl)cyclopentadienyl dichloride complex [η5:η1-C5H4(CH2)2NMe2]VCl2(PMe3) with 1 equiv of Na/Hg yielded the V(II) dimer {[η5:η1-C5H4(CH2)2NMe2]V(µ-Cl)}2 (2). This compound reacted with diphenylacetylene in THF to give the V(II) alkyne adduct [η5:η1-C5H4(CH2)2NMe2]VCl(η2-PhC≡CPh). Further reduction of 2 with Mg in the presence of diphenylacetylene resulted in oxidative coupling of two diphenylacetylene groups to yield the diamagnetic, formally V(V), bent metallacyclopentatriene complex [η5:η1-C5H4(CH2)2NMe2]V(C4Ph4).

    Heterogeneous microstructures tuned in a high throughput architecture

    Get PDF
    A new method applied to the sensor proposed by Zhang et al. in 2018 is demonstrated in this paper that combines the benefits of this design with the fast heating possible with nanocalorimetry. By applying a PID regulated pulse instead of a constant wattage, we unlock an accessible method to sense morphological changes occurring over short time periods that would be invisible to methods based only on heat capacity. In this study, multilayer Ni/Al thin films were linearly heated at 25, 50, 100, and 200 K/s to over 700°C, showing two distinct peaks in resistance change with activation energies of 554 and 747 kJ/mol, respectively. Through Scanning Transmission Electron Microscopy (STEM) and Energy Dispersive X-ray Analysis (EDX) analysis on cross sections taken ex situ from samples quenched before and after the peaks of interest, we find strong evidence that peak 1 corresponds to Ni diffusing through Al grain boundaries forming intermetallic phases that essentially block the highly conductive Al pathway. This presents the potential to design and calibrate novel heterogeneous structures in a high throughput manner

    Why could Electron Spin Resonance be observed in a heavy fermion Kondo lattice?

    Get PDF
    We develop a theoretical basis for understanding the spin relaxation processes in Kondo lattice systems with heavy fermions as experimentally observed by electron spin resonance (ESR). The Kondo effect leads to a common energy scale that regulates a logarithmic divergence of different spin kinetic coefficients and supports a collective spin motion of the Kondo ions with conduction electrons. We find that the relaxation rate of a collective spin mode is greatly reduced due to a mutual cancelation of all the divergent contributions even in the case of the strongly anisotropic Kondo interaction. The contribution to the ESR linewidth caused by the local magnetic field distribution is subject to motional narrowing supported by ferromagnetic correlations. The developed theoretical model successfully explains the ESR data of YbRh2Si2 in terms of their dependence on temperature and magnetic field.Comment: 5pages, 1 Figur

    Monoclonal antibodies against human astrocytomas and their reactivity pattern

    Get PDF
    The establishment of hybridomas after fusion of X63-Ag8.653 mouse myeloma cells and splenocytes from mice hyperimmunized against human astrocytomas is presented. The animals were primed with 5 × 106 chemically modified uncultured or cultured glioma cells. Six weeks after the last immunization step an intrasplenal booster injection was administrated and 3 days later the spleen cells were prepared for fusion experiments. According to the specificity analysis of the generated antibodies 7 hybridoma products (MUC 7-22, MUC 8-22, MUC 10-22, MUC 11-22, MUC 14-22, MUC 15-22 and MUC 2-63) react with gliomas, neuroblastomas and melanomas as well as with embryonic and fetal cells but do not recognize non-neurogenic tumors. The selected monoclonal antibodies (McAbs) of IgG1 and IgG2a isotypes are not extensively characterized but these antibodies have been demonstrated to be reactive with a panel of glioma cell lines with varying patterns of antigen distribution. Using the McAbs described above and a series of cryosections of glioma biopsies and paraffin sections of the same material as well as glioma cultures established from these, variable antigenic profiles among glioma cell populations could be demonstrated. From these results it is evident that there is not only a distinct degree of antigenic heterogeneity among and within brain tumors, but also that the pattern of antigenic expression can change continuously. Some of the glioma associated antigens recognized by the selected antibodies persist after fixation with methanol/acetone and Karnovsky's fixative and probably are oncoembryonic/oncofetal antigen(s). The data suggest that the use of McAbs recognizing tumor associated oncofetal antigens in immunohistochemistry facilitates objective typing of intracranial malignancies and precise analysis of fine needle brain/tumor biopsies in a sensitive and reproducible manner
    corecore