141 research outputs found

    Optimization and Quality Assessment of Baryon Pasting for Intracluster Gas using the Borg Cube Simulation

    Full text link
    Synthetic datasets generated from large-volume gravity-only simulations are an important tool in the calibration of cosmological analyses. Their creation often requires accurate inference of baryonic observables from the dark matter field. We explore the effectiveness of a baryon pasting algorithm in providing precise estimations of three-dimensional gas thermodynamic properties based on gravity-only simulations. We use the Borg Cube, a pair of simulations originating from identical initial conditions, with one run evolved as a gravity-only simulation, and the other incorporating non-radiative hydrodynamics. Matching halos in both simulations enables comparisons of gas properties on an individual halo basis. This comparative analysis allows us to fit for the model parameters that yield the closest agreement between the gas properties in both runs. To capture the redshift evolution of these parameters, we perform the analysis at five distinct redshift steps, spanning from z=0z=0 to 22. We find that the investigated algorithm, utilizing information solely from the gravity-only simulation, achieves few-percent accuracy in reproducing the median intracluster gas pressure and density, albeit with a scatter of approximately 20%, for cluster-scale objects up to z=2z=2. We measure the scaling relation between integrated Compton parameter and cluster mass (Y500c∣M500cY_{500c} | M_{500c}), and find that the imprecision of baryon pasting adds less than 5% to the intrinsic scatter measured in the hydrodynamic simulation. We provide best-fitting values and their redshift evolution, and discuss future investigations that will be undertaken to extend this work.Comment: 14 pages, 8 figures, 3 tables; accepted in the Open Journal of Astrophysic

    NIKA2 observations of dust grain evolution from star-forming filament to T-Tauri disk: Preliminary results from NIKA2 observations of the Taurus B211/B213 filament

    Full text link
    To understand the evolution of dust properties in molecular clouds in the course of the star formation process, we constrain the changes in the dust emissivity index from star-forming filaments to prestellar and protostellar cores to T Tauri stars. Using the NIKA2 continuum camera on the IRAM 30~m telescope, we observed the Taurus B211/B213 filament at 1.2\,mm and 2\,mm with unprecedented sensitivity and used the resulting maps to derive the dust emissivity index ÎČ\beta. Our sample of 105 objects detected in the ÎČ\beta map of the B211/B213 filament indicates that, overall, ÎČ\beta decreases from filament and prestellar cores (ÎČ∌2±0.5\beta \sim 2\pm0.5) to protostellar cores (ÎČ∌1.2±0.2\beta \sim 1.2 \pm 0.2) to T-Tauri protoplanetary disk (ÎČ<1\beta < 1). The averaged dust emissivity index ÎČ\beta across the B211/B213 filament exhibits a flat (ÎČ∌2±0.3\beta \sim 2\pm0.3) profile. This may imply that dust grain sizes are rather homogeneous in the filament, start to grow significantly in size only after the onset of the gravitational contraction/collapse of prestellar cores to protostars, reaching big sizes in T Tauri protoplanetary disks. This evolution from the parent filament to T-Tauri disks happens on a timescale of about 1-2~Myr.Comment: to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    IAS/CEA Evolution of Dust in Nearby Galaxies (ICED): the spatially-resolved dust properties of NGC4254

    Full text link
    We present the first preliminary results of the project \textit{ICED}, focusing on the face-on galaxy NGC4254. We use the millimetre maps observed with NIKA2 at IRAM-30m, as part of the IMEGIN Guaranteed Time Large Program, and of a wide collection of ancillary data (multi-wavelength photometry and gas phase spectral lines) that are publicly available. We derive the global and local properties of interstellar dust grains through infrared-to-radio spectral energy distribution fitting, using the hierarchical Bayesian code HerBIE, which includes the grain properties of the state-of-the-art dust model, THEMIS. Our method allows us to get the following dust parameters: dust mass, average interstellar radiation field, and fraction of small grains. Also, it is effective in retrieving the intrinsic correlations between dust parameters and interstellar medium properties. We find an evident anti-correlation between the interstellar radiation field and the fraction of small grains in the centre of NGC4254, meaning that, at strong radiation field intensities, very small amorphous carbon grains are efficiently destroyed by the ultra-violet photons coming from newly formed stars, through photo-desorption and sublimation. We observe a flattening of the anti-correlation at larger radial distances, which may be driven by the steep metallicity gradient measured in NGC4254.Comment: to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    NIKA2 observations of 3 low-mass galaxy clusters at z∌1z \sim 1: pressure profile and YSZY_{\rm SZ}-MM relation

    Full text link
    Three galaxy clusters selected from the XXL X-ray survey at high redshift and low mass (z∌1z\sim1 and M500∌1−2×1014M_{500} \sim 1-2 \times 10^{14} M⊙_{\odot}) were observed with NIKA2 to image their Sunyaev-Zel'dovich effect (SZ) signal. They all present an SZ morphology, together with the comparison with X-ray and optical data, that indicates dynamical activity related to merging events. Despite their disturbed intracluster medium, their high redshifts, and their low masses, the three clusters follow remarkably well the pressure profile and the SZ flux-mass relation expected from standard evolution. This suggests that the physics that drives cluster formation is already in place at z∌1z \sim 1 down to M500∌1014M_{500} \sim 10^{14} M⊙_{\odot}.Comment: to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    Exploring the interstellar medium of NGC 891 at millimeter wavelengths using the NIKA2 camera

    Full text link
    In the framework of the IMEGIN Large Program, we used the NIKA2 camera on the IRAM 30-m telescope to observe the edge-on galaxy NGC 891 at 1.15 mm and 2 mm and at a FWHM of 11.1" and 17.6", respectively. Multiwavelength data enriched with the new NIKA2 observations fitted by the HerBIE SED code (coupled with the THEMIS dust model) were used to constrain the physical properties of the ISM. Emission originating from the diffuse dust disk is detected at all wavelengths from mid-IR to mm, while mid-IR observations reveal warm dust emission from compact HII regions. Indications of mm excess emission have also been found in the outer parts of the galactic disk. Furthermore, our SED fitting analysis constrained the mass fraction of the small (< 15 Angstrom) dust grains. We found that small grains constitute 9.5% of the total dust mass in the galactic plane, but this fraction increases up to ~ 20% at large distances (|z| > 3 kpc) from the galactic plane.Comment: To appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Science

    The XXL Survey: XLIV. Sunyaev-Zel’dovich mapping of a low-mass cluster at z ∌ 1: a multi-wavelength approach

    Get PDF
    High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel’dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system (M500 ∌ 2 × 1014 M⊙) at z = 0.97 detected from the XXL survey. We combine NIKA2 SZ data, XMM-Newton X-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∌r500, and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters at z ∌ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST and Euclid

    A Measurement of Gravitational Lensing of the Cosmic Microwave Background Using SPT-3G 2018 Data

    Full text link
    We present a measurement of gravitational lensing over 1500 deg2^2 of the Southern sky using SPT-3G temperature data at 95 and 150 GHz taken in 2018. The lensing amplitude relative to a fiducial Planck 2018 Λ\LambdaCDM cosmology is found to be 1.020±0.0601.020\pm0.060, excluding instrumental and astrophysical systematic uncertainties. We conduct extensive systematic and null tests to check the robustness of the lensing measurements, and report a minimum-variance combined lensing power spectrum over angular multipoles of 50<L<200050<L<2000, which we use to constrain cosmological models. When analyzed alone and jointly with primary cosmic microwave background (CMB) spectra within the Λ\LambdaCDM model, our lensing amplitude measurements are consistent with measurements from SPT-SZ, SPTpol, ACT, and Planck. Incorporating loose priors on the baryon density and other parameters including uncertainties on a foreground bias template, we obtain a 1σ1\sigma constraint on σ8Ωm0.25=0.595±0.026\sigma_8 \Omega_{\rm m}^{0.25}=0.595 \pm 0.026 using the SPT-3G 2018 lensing data alone, where σ8\sigma_8 is a common measure of the amplitude of structure today and Ωm\Omega_{\rm m} is the matter density parameter. Combining SPT-3G 2018 lensing measurements with baryon acoustic oscillation (BAO) data, we derive parameter constraints of σ8=0.810±0.033\sigma_8 = 0.810 \pm 0.033, S8â‰ĄÏƒ8(Ωm/0.3)0.5=0.836±0.039S_8 \equiv \sigma_8(\Omega_{\rm m}/0.3)^{0.5}= 0.836 \pm 0.039, and Hubble constant H0=68.8−1.6+1.3H_0 =68.8^{+1.3}_{-1.6} km s−1^{-1} Mpc−1^{-1}. Using CMB anisotropy and lensing measurements from SPT-3G only, we provide independent constraints on the spatial curvature of ΩK=0.014−0.026+0.023\Omega_{K} = 0.014^{+0.023}_{-0.026} (95% C.L.) and the dark energy density of ΩΛ=0.722−0.026+0.031\Omega_\Lambda = 0.722^{+0.031}_{-0.026} (68% C.L.). When combining SPT-3G lensing data with SPT-3G CMB anisotropy and BAO data, we find an upper limit on the sum of the neutrino masses of ∑mÎœ<0.30\sum m_{\nu}< 0.30 eV (95% C.L.)

    SPT Clusters with DES and HST Weak Lensing. I. Cluster Lensing and Bayesian Population Modeling of Multi-Wavelength Cluster Datasets

    Full text link
    We present a Bayesian population modeling method to analyze the abundance of galaxy clusters identified by the South Pole Telescope (SPT) with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). We discuss and validate the modeling choices with a particular focus on a robust, weak-lensing-based mass calibration using DES data. For the DES Year 3 data, we report a systematic uncertainty in weak-lensing mass calibration that increases from 1\% at z=0.25z=0.25 to 10\% at z=0.95z=0.95, to which we add 2\% in quadrature to account for uncertainties in the impact of baryonic effects. We implement an analysis pipeline that joins the cluster abundance likelihood with a multi-observable likelihood for the SZ, optical richness, and weak-lensing measurements for each individual cluster. We validate that our analysis pipeline can recover unbiased cosmological constraints by analyzing mocks that closely resemble the cluster sample extracted from the SPT-SZ, SPTpol~ECS, and SPTpol~500d surveys and the DES Year~3 and HST-39 weak-lensing datasets. This work represents a crucial prerequisite for the subsequent cosmological analysis of the real dataset.Comment: submitted to PR

    panco2: a Python library to measure intracluster medium pressure profiles from Sunyaev-Zeldovich observations

    No full text
    We present panco2, an open-source Python library designed to extract galaxy cluster pressure profiles from maps of the thermal Sunyaev-Zeldovich effect. The extraction is based on forward modeling of the total observed signal, allowing to take into account usual features of millimeter observations, such as beam smearing, data processing filtering, and point source contamination. panco2 offers a large flexibility in the inputs that can be handled and in the analysis options, enabling refined analyses and studies of systematic effects. We detail the functionalities of the code, the algorithm used to infer pressure profile measurements, and the typical data products. We present examples of running sequences, and the validation on simulated inputs. The code is available on GitHub at https://github.com/fkeruzore/panco2, and comes with an extensive technical documentation to complement this paper at https://panco2.readthedocs.io

    panco2: a Python library to measure intracluster medium pressure profiles from Sunyaev-Zeldovich observations

    No full text
    We present panco2, an open-source Python library designed to extract galaxy cluster pressure profiles from maps of the thermal Sunyaev-Zeldovich effect. The extraction is based on forward modeling of the total observed signal, allowing to take into account usual features of millimeter observations, such as beam smearing, data processing filtering, and point source contamination. panco2 offers a large flexibility in the inputs that can be handled and in the analysis options, enabling refined analyses and studies of systematic effects. We detail the functionalities of the code, the algorithm used to infer pressure profile measurements, and the typical data products. We present examples of running sequences, and the validation on simulated inputs. The code is available on GitHub at https://github.com/fkeruzore/panco2, and comes with an extensive technical documentation to complement this paper at https://panco2.readthedocs.io
    • 

    corecore