10 research outputs found

    Laser Cladding of TiC for Better Titanium Components

    Get PDF
    Pure commercial titanium is widely used because of its high corrosion resistance and lower cost compared with other titanium alloys, in particular when there is no high wear requirements. Nevertheless, the wear resistance is poor and surface damage usually occurs in areas under contact loadings. Laser cladding is a suitable technique for manufacturing precise and defect free coatings of a dissimilar material with higher wear and corrosion resistance. In this work a good understanding of laser metal deposition mechanisms allowed to obtain defect free coatings of Ti6Al4V and TiC metal matrix composite (MMC) using a flash lamp pumped Nd:YAG laser of 1 kW. A complete investigation of the process parameters is discussed and resultant wear properties are shown. The results show the feasibility to apply the process for manufacturing, improving or repairing high added value components for a wide range of industrial sectors. © 2011 Published by Elsevier Ltd.Sampedro, J.; Pérez, I.; Cárcel González, B.; Ramos, JA.; Amigó Borrás, V. (2011). Laser Cladding of TiC for Better Titanium Components. Physics Procedia. 12(Part A):313-322. doi:10.1016/j.phpro.2011.03.040S31332212Part

    Milk coagulation properties and methods of detection

    Get PDF
    ABSTRACT: One of the most crucial steps in cheesemaking is the coagulation process, and knowledge of the parameters involved in the clotting process plays an important technological role in the dairy industry. Milk of different ruminant species vary in terms of their coagulation capacities because they are influenced by the milk composition and mainly by the milk protein genetic variants. The milk coagulation capacity can be measured by means of mechanical and/or optical devices, such as Lactodynamographic Analysis and Near-Infrared and Mid-Infrared Spectroscopy

    European coordinated metrological effort for quantum cryptography

    No full text
    Quantum Key Distribution, a fundamental component of quantum secure communication that exploits quantum states and resources for communication protocols, can future-proof the security of digital communications, when if advanced quantum computing systems and mathematical advances render current algorithmic cryptography insecure. A QKD system relies on the integration of quantum physical devices, as quantum sources, quantum channels and quantum detectors, in order to generate a true random (unconditionally secure) cryptographic key between two remote parties connected through a quantum channel. The gap between QKD implemented with ideal and real devices can be exploited to attack real systems, unless appropriate countermeasures are implemented. Characterization of real devices and countermeasure is necessary to guarantee security. Free-space QKD systems can provide secure communication to remote parties of the globe, while QKD systems based on entanglement are intrinsically less vulnerable to attack. Metrology to characterize the optical components of these systems is required. Actually, the "Optical metrology for quantum-enhanced secure telecommunication" Project (MIQC2) is steering the metrological effort for Quantum Cryptography in the European region in order to accelerate the development and commercial uptake of Quantum Key Distribution (QKD) technologies. Aim of the project is the development of traceable measurement techniques, apparatus, and protocols that will underpin the characterisation and validation of the performance and quantum-safe security of such systems, essential steps towards standardization and certification of practical implementations of quantum-based technologies.Peer reviewe
    corecore