60 research outputs found
The male genital system of the cellar spider Pholcus phalangioides (Fuesslin, 1775) (Pholcidae, Araneae): development of spermatozoa and seminal secretion
BACKGROUND: Most arthropods pass through several molting stages (instars) before reaching sexual maturity. In spiders, very little is known about the male genital system, its development and seminal secretions. For example, it is unknown whether spermatozoa exist prior to-, or only after the final molt. Likewise, it is unclear whether sperm are produced throughout male adulthood or only once in a lifetime, as is whether seminal secretions contain factors capable of manipulating female behavior. In order to shed light on these aspects of the reproductive biology of spiders, we investigated the male genital system of the common cellar spider Pholcus phalangioides, with special emphasis on its development and seminal secretions. RESULTS: Testes already display all stages of spermatogenesis in subadult males (about four weeks before the final molt). Their vasa deferentia possess proximally a very voluminous lumen containing dense seminal fluid and few spermatozoa, whereas the distal part is seemingly devoid of contents. Spermatoza of P. phalangioides are typical cleistospermia with individual secretion sheaths. In male stages approximately two weeks prior to the final molt, the lumina of the testes are wider and filled with a dense secretion. The wide, proximal portion of the vasa deferentia is filled with secretion and a large number of spermatozoa, and the narrow distal part also contains secretion. In adult males, the wide lumina of the testes are packed with spermatozoa and secretions. The latter are produced by the somatic cells that bear microvilli and contain many vesicles. The lumina of the vasa deferentia are narrow and filled with spermatozoa and secretions. We could identify a dense matrix of secretion consisting of mucosubstances and at least three types of secretion droplets, likely consisting of proteinaceous substances. CONCLUSION: This study reveals that spermatogenesis begins weeks before maturity and takes place continuously in the long-lived males of P. phalangioides. Possible functions of the various types of secretion in the seminal fluid and previously investigated female secretions are discussed in the light of sexual selection
Recommended reading list of early publications on atomic layer deposition-Outcome of the "Virtual Project on the History of ALD"
Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual project on the history of ALD (VPHA) is a volunteer-based effort with open participation, set up to make the early days of ALD more transparent. In VPHA, started in July 2013, the target is to list, read and comment on all early ALD academic and patent literature up to 1986. VPHA has resulted in two essays and several presentations at international conferences. This paper, based on a poster presentation at the 16th International Conference on Atomic Layer Deposition in Dublin, Ireland, 2016, presents a recommended reading list of early ALD publications, created collectively by the VPHA participants through voting. The list contains 22 publications from Finland, Japan, Soviet Union, United Kingdom, and United States. Up to now, a balanced overview regarding the early history of ALD has been missing; the current list is an attempt to remedy this deficiency. (C) 2016 Author(s).Peer reviewe
Reactive phase formation in thin film metal/metal and metal/silicon diffusion couples
There have been number of efforts to develop a model that could be used to predict and to describe phase formation in the case of thin film diffusion couples. In this report, thermodynamic and kinetic frameworks as well as some of the proposed models for interface reactions have been critically reviewed. Following conclusions have been made: Firstly, in the early stage, solid-state interface reaction is a kinetic process. Phase selection and phase formation sequence are controlled mainly by nucleation kinetics and/or growth kinetics. Secondly, in order to simulate interface reactions in thin film diffusion couples, kinetic description of the system is required and should be combined with the thermodynamic description. This in turn requires the assumption of local thermodynamic equilibrium in the system. However, whether or not local equilibrium can be assumed at the interface in a thin film system depends on the thickness of the films, nucleation and growth kinetics, and the diffusivity of elements in the product phases. Finally, based on the theoretical considerations it appears that there is no fundamental difference between thin film and bulk diffusion couples
- …