7 research outputs found

    Modulation of human serum glutathione S-transferase-A1/2 concentration by cruciferous vegetables in a controlled feeding study is influenced by GSTM1 and GSTT1 genotypes

    Get PDF
    Glutathione S-transferases (GST) detoxify a wide range of carcinogens. Isothiocyanates (ITC), from cruciferous vegetables, are substrates for, and inducers of GST. GST variants may alter ITC clearance such that response to crucifers varies by genotype. In a randomized cross-over trial, we tested the hypothesis that changes in serum GSTA1/2 concentration in response to cruciferous vegetable feeding depends on GSTM1/GSTT1 genotype. Thirty-three men and 34 women (age 20-40 yr), ate four 14-day controlled diets: basal (vegetable-free), basal supplemented with 2 different doses of crucifers, (single-“dose” and double-“dose”) and single-dose cruciferous-plus-apiaceous vegetables, fed per kg body weight. Fasting bloods from days 0, 7, 11, and 14 of each diet period were analyzed for serum GSTA1/2 by ELISA. GSTA1/2 increased with single- and double-dose cruciferous compared to basal diet (10% and 13%, respectively; P = 0.02 and 0.004), but cruciferous-plus-apiaceous did not differ from basal (P = 0.59). Overall, GSTA1/2 was higher in GSTM1-null/GSTT1-null than GSTM1+/GSTT1+ individuals (4198 ± 338 and 3372 ± 183 pg/ml; P = 0.03). The formal interaction of genotype-by-diet was not statistically significant, but the GSTA1/2 increase during the single-dose cruciferous diet was among GSTM1-null/GSTT1-null individuals (by 28%; P = 0.008), largely explained by GSTM1-null/GSTT1-null men (by 41%; P = 0.01). GSTA1/2 increased during the double-dose cruciferous diet in both GSTM1-null/GSTT1-null men (by 35 %; P = 0.04) and GSTM1+/GSTT1+ men (by 26%; P = 0.01), but not in women. In summary, cruciferous vegetable supplementation increased GSTA1/2, but the effect was most marked in GSTM1-null/GSTT1-null men

    DNA Damage and Repair: Fruit and Vegetable Effects in a Feeding Trial

    No full text
    Epidemiologic studies have examined the association between fruit and vegetable (F&V) consumption and the risk of cancer. Several cancer-preventive mechanisms have been proposed, such as antioxidant properties and modulation of biotransformation enzyme activities; both may be associated with reducing DNA damage and hence the mutation rate. We investigated, in a randomized, controlled, crossover feeding trial, the effect of 10 servings/day of botanically defined F&V for 2 wk on endogenous DNA damage; resistance to γ -irradiation damage; and DNA repair capacity in lymphocytes, measured by the Comet assay. We also explored the association between the UGT1A1*28 polymorphism and serum bilirubin concentrations and DNA damage and repair measures. Healthy men (n = 11) and women (n = 17), age 20 to 40 yr, provided blood samples at the end of each feeding period. Overall, F&V did not affect DNA damage and repair measures in lymphocytes. The number of UGT1A1*28 alleles was inversely associated with sensitivity to γ -irradiation exposure and DNA repair capacity, but a biological mechanism to explain this association is unclear. A larger sample size is needed to investigate the association between bilirubin concentrations and endogenous DNA damage. With inconsistent findings in the literature, additional dietary intervention studies on the effect of F&V on DNA damage and repair are needed

    Citrus Fruit Intake Is Associated with Lower Serum Bilirubin Concentration among Women with the UGT1A1*28 Polymorphism1–3

    No full text
    UDP-glucuronosyltransferase (UGT) 1A1 glucuronidates bilirubin, estrogens, and xenobiotic compounds. The UGT1A1*28 polymorphism results in lower promoter activity due to 7 thymine-adenine (TA) repeats rather than the more common 6 TA repeats. Previously, we showed that serum bilirubin, a marker of UGT1A1 activity, was lower among individuals homozygous for the UGT1A1*28 polymorphism (7/7) when randomized to a high fruit and vegetable (F&V) diet, whereas there was no effect in individuals with the wild-type (6/6) and heterozygous (6/7) genotypes. Our objective here was to determine if we could detect genotype × diet interactions on bilirubin concentrations in an observational study. Healthy nonsmoking men (n = 146) and women (n = 147), recruited from the Seattle area, provided blood samples for genotyping and bilirubin measurements. We used multiple linear regression to assess the relationships among UGT1A1 genotype, bilirubin concentrations, and consumption of specific F&V [cruciferous vegetables, citrus fruits, and soy foods (n = 268)] based on FFQ and F&V from 6 botanical families [Cruciferae, Rosaceae, Rutaceae, Umbelliferae, Solanaceae, and Leguminosae (n = 261)] based on 3-d food records. We observed a significant interaction of UGT1A1 genotype and citrus consumption among women. Women with the 7/7 genotype who consumed ≥0.5 daily servings of citrus fruit or foods from the Rutaceae botanical family had ∼30% lower serum bilirubin than those with the same genotype who consumed less, whereas 6/6 and 6/7 genotypes did not differ by consumption (P for interaction = 0.006 and 0.03, respectively). These results suggest that citrus consumption may increase UGT1A1 activity among women with the 7/7 genotype
    corecore