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Abstract 

Glutathione S-transferases (GST) detoxify a wide range of carcinogens.  Isothiocyanates 

(ITC), from cruciferous vegetables, are substrates for, and inducers of GST.  GST 

variants may alter ITC clearance such that response to crucifers varies by genotype.  In a 

randomized cross-over trial, we tested the hypothesis that changes in serum GSTA1/2 

concentration in response to cruciferous vegetable feeding depends on GSTM1/GSTT1 

genotype.  Thirty-three men and 34 women (age 20-40 yr), ate four 14-day controlled 

diets: basal (vegetable-free), basal supplemented with 2 different doses of crucifers, 

(single-“dose” and double-“dose”) and single-dose cruciferous-plus-apiaceous vegetables, 

fed per kg body weight.  Fasting bloods from days 0, 7, 11, and 14 of each diet period 

were analyzed for serum GSTA1/2 by ELISA.  GSTA1/2 increased with single- and 

double-dose cruciferous compared to basal diet (10% and 13%, respectively; P = 0.02 

and 0.004), but cruciferous-plus-apiaceous did not differ from basal (P = 0.59).  Overall, 

GSTA1/2 was higher in GSTM1-null/GSTT1-null than GSTM1+/GSTT1+ individuals 

(4198 ± 338 and 3372 ± 183 pg/ml; P = 0.03).  The formal interaction of genotype-by-

diet was not statistically significant, but the GSTA1/2 increase during the single-dose 

cruciferous diet was among GSTM1-null/GSTT1-null individuals (by 28%; P = 0.008), 

largely explained by GSTM1-null/GSTT1-null men (by 41%; P = 0.01).  GSTA1/2 

increased during the double-dose cruciferous diet in both GSTM1-null/GSTT1-null men 

(by 35 %; P = 0.04) and GSTM1+/GSTT1+ men (by 26%; P = 0.01), but not in women.  

In summary, cruciferous vegetable supplementation increased GSTA1/2, but the effect 

was most marked in GSTM1-null/GSTT1-null men.  
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Introduction 

 Cruciferous vegetables contain high amounts of glucosinolates (1) which, upon 

hydrolysis, form biologically active compounds such as indoles and isothiocyanates 

(ITC).  These compounds may exert chemo-protective effects through several 

mechanisms, including induction of detoxification enzymes.  Glutathione S-transferases 

(GST) are enzymes that detoxify a broad range of electrophiles by conjugation with 

glutathione.  ITCs are also substrates for GST, particularly GSTM1 (2).  Null genotypes 

for GSTM1 and GSTT1 result in the absence of their respective enzymes; thus, among 

GSTM1-null and GSTT1-null individuals, ITC may be metabolized more slowly and thus, 

increase the likelihood of up-regulation of other GST isoenzymes (3, 4).   GSTA1 is the 

major hepatic GST (5).  Despite overlap in substrate specificity, GSTA1 has a higher 

affinity than other GSTs for many carcinogens, particularly polycyclic aromatic 

hydrocarbons including the activated heterocyclic amine, 2-amino-1-methyl-6-

phenylimidazaol[4,5-b]pyridine (PhIP), produced in well-cooked meats and implicated in 

the etiology of colorectal cancer (6).   

 

Previously we reported that, compared to a diet devoid of fruit and vegetables, a 

cruciferous vegetable diet fed for 7 days statistically significantly increased serum 

GSTA1/2 concentrations, particularly in GSTM1-null women (7).  We also found that 

GSTA1/2 concentrations measured at day 7 were significantly higher than on day 6, 

suggesting that the response to diet had not reached a steady state after 1 week.  Our 

objectives in this follow-up study were to test: (a) the combined effect of GSTM1/GSTT1 

genotypes on serum GSTA1/2 concentrations in response to three defined vegetable diets 
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compared to a vegetable-free diet; and (b) whether there was a dose-response effect.  

Secondary aims were to: (a) evaluate the difference in serum GST-α concentrations 

between one and two weeks of cruciferous vegetable feeding; and (b) determine the 

additional effect of GSTT1 genotype on serum GSTA1/2 response to diet among GSTM1-

null individuals.  

 

Methods 

We used a randomized, controlled, crossover design with four experimental diets 

as described previously (8).  Participants were recruited based on sex, and 

GSTM1/GSTT1 and CYP1A2 genotype and each participant received the four diets in 

computer-generated random sequence, blocked on genotype and sex.  Each diet was 

consumed for 14 days with a 3-week washout period between the diets.  Exclusion 

criteria included factors known to influence biotransformation-enzyme induction, e.g., 

medications, alcohol, and smoking. 

 

 Of the 73 participants randomized, two had GSTM1+/GSTT1-null (versus 

GSTM1-null/GSTT1+) genotypes because they were recruited for their CYP1A2(C734 A) 

genotype, and were not included in this analysis.  Three additional participants were not 

included in the analysis due to an insufficient serum sample or extreme GSTA1/2 values 

(>20,000 pg/ml).  Four participants dropped out after the first feeding period, five after 

the second, and three after the third.  Data for all completed diet periods were included in 

the analysis, even if a participant did not complete all four diet periods, except for one 
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individual who completed only the basal diet.  Sixty-seven participants were included in 

the final analysis.   

 

Participants consumed four different diets with vegetable doses based on a per-

kg-body weight (BW) calculation to minimize confounding by BW between sexes: a 

basal, fruit- and vegetable-free diet; the basal diet supplemented with ~7 g cruciferous 

vegetables (a mixture of broccoli, cabbage, cauliflower and radish sprouts) per kg BW 

(“single-dose”); the basal diet supplemented with ~14 g cruciferous vegetables per kg 

BW (“double-dose”); and the basal diet supplemented with ~7 g cruciferous vegetables  

plus ~4 g apiaceous vegetables (a mixture of carrots, celery, dill weed, parsley and 

parsnips) per kg BW.  Study diet details have been published previously (8).    

 

Biologic samples were collected at baseline and during each two-week feeding 

period at day 0, 7, 11, and 14 in the morning after a 12-hour overnight fast (8).  Buccal 

cells, collected prior to randomization, were isolated and DNA extracted for 

determination of GSTM1/GSTT1 genotype and participant eligibility.   

 

GSTM1 and GSTT1 genotyping (present versus null) was conducted on buccal-

cell DNA (8), using primers outlined by Arand et al. (9).  GSTA1 was amplified using 

primer sequences 5' TGTTGATTGTTTGCCTGAAATTCAC 3' and 5' 

GTTAAACGCTGTCACCGTCCTG3' under the following PCR conditions: 1 cycle at 

95°C for 5 min, 40 cycles at 94°C for 1 min, 63°C for 1 min, 72°C for 2 min, 1 cycle at 

72°C for 5 min.  The resulting PCR fragment was digested with restriction enzyme EarI 
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for 2 hours at 37°C.  The reaction was then run on a 2% agarose gel and genotype 

determined by fragments of different size (10). 

 

Serum GSTA1/2 concentrations were measured using a commercially available, 

enzyme-linked immunoassay kit (High Sensitivity Alpha GST EIA Hepkit, Biotrin 

International, Dublin, Ireland), which measures a mixture of GSTA1 and GSTA2 

subunits (7).  Intra- and inter-assay CVs on quality-control serum (mean 3510 pg/ml) 

were 2.7 and 16.2%, respectively.  Using HPLC (11), we measured urinary total ITC in 

24-hour urines collected on day 13 to assess diet adherence.  

 

Statistical analysis  

Prior to analysis, natural logarithmic transformations were performed on 

GSTA1/2 concentrations to normalize distributions.  A linear mixed model was used, 

including sex, GSTM1/GSTT1 genotypes, feeding periods, diet treatments, feeding order, 

sampling day and interaction terms as fixed effects and participants as a random effect.  

Observations at day 0 and habitual diet were covariates adjusted in the model.  Analyses 

by GSTA1 genotype were carried out using the same model.  Pearson correlation was 

used to evaluate the correlations between GSTA1/2 concentrations and 24-h total ITC.  

All statistical analyses were performed using the Statistical Analysis System Program 

(version 8.2; SAS Institute).  Data are presented as back-transformed least squares (LS) –

means + standard errors (SE), unless otherwise indicated.  Because there were no 

statistically significant differences between analyses with and without adjustment for 
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vegetable amount, the data are presented without adjustment.  Two-sided P value for 

statistical significance was set at <0.05.     

 

Results 

Of the 67 participants, two completed only three diet periods, five completed two, 

and three completed one diet period.  There were no differences in demographic and 

baseline characteristics across genotypes (Table 1).   Eighty-seven percent or more of the 

prescribed dose of study vegetables was consumed on each vegetable-supplemented diet.  

Based on daily food check-off forms, participants consumed non-study food items <3% 

of study days.  Total vegetable intake ranged from 284 – 662 g for the single-dose 

cruciferous, 568 – 1324 g for the double-dose cruciferous, and 458 – 1065 g for the 

single-dose cruciferous-plus-apiaceous diet. 

 

Overall (Days 7, 11, and 14, and all diets combined), GSTA1/2 concentrations 

were higher among GSTM1-null/GSTT1-null individuals than GSTM1+/GSTT1+ 

individuals (4198 ± 338 pg/ml and 3372 ± 183 pg/ml, respectively; P = 0.03), but did not 

differ between men and women (P = 0.4; Table 2).  Among GSTM1-null individuals, 

there was no additional effect of GSTT1-null genotype (3573 ± 190 pg/ml versus 4198 ± 

338 pg/ml for GSTM1-null/GSTT1-null; P = 0.1).      

  

GSTA1/2 concentrations were higher on the single-dose and double-dose 

cruciferous diets than on the basal diet (by 10% and 13%, respectively; P = 0.02 and 

0.004); however, there was no dose-response effect (P = 0.5).  Consumption of the 
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single-dose cruciferous-plus-apiaceous diet did not increase GSTA1/2 concentrations 

compared to the basal diet.   

 

When evaluating response to diet stratified by genotype and sex, increases in 

GSTA1/2 concentrations during the single-dose cruciferous diet were exclusively among 

GSTM1-null/GSTT1-null individuals (by 28%; P = 0.008), largely explained by GSTM1-

null/GSTT1-null men (by 41%; P = 0.01).  During the double-dose cruciferous diet, 

GSTA1/2 concentrations increased in both GSTM1-null/GSTT1-null men (by 35%; P = 

0.04) and GSTM1+/GSTT1+ men (by 26%; P = 0.01), but not in women (Table 2).  

Although there was no overall effect of cruciferous-plus-apiaceous vegetables compared 

to the basal diet, increases in GSTA1/2 concentrations were observed in 

GSTM1+/GSTT1+ men (by 20%; P = 0.03; Table 2), but was related to lower GSTA1/2 

concentrations during the basal diet.  Compared to the single- and double-dose 

cruciferous diets, the cruciferous-plus-apiaceous diet decreased GSTA1/2 concentration 

in GSTM1-null/GSTT1-null men (by 35% and 33%, respectively; P = 0.003 and 0.009). 

 

Overall, a statistically significant effect of the single-dose cruciferous diet on 

GSTA1/2 concentrations (compared to basal diet) was observed at day 7 (by 13%; P = 

0.04) but not at day 11 (by 11%; P = 0.07) or day 14 (by 5%; P = 0.4 Table 3).  The 

double-dose cruciferous diet increased GSTA1/2 concentrations at day 7 and day 11 (by 

14% and 15%, respectively; P = 0.04 and 0.03) but only marginally by day 14 (by 11%; 

P = 0.08).   
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When examining the diet effects measured at different sampling days by genotype, 

the greatest effect of single-dose cruciferous vegetables was observed among GSTM1-

null/GSTT1-null individuals at day 7 (by 50%; P = 0.002), and day 11 (by 31%;  P = 

0.04), but not day 14 (by 6%; P = 0.6).  Compared to the basal diet, the double-dose 

cruciferous diet did not differ by genotype at any sampling day, except for an increase in 

GSTA1/2 concentrations among GSTM1+/GSTT1+ individuals at day 11 (by 23%; 

P=0.02), a result of lower GSTA1/2 concentrations during the basal diet for this group.  

 

The -69C>T polymorphism in the promoter region of the GSTA1 gene has been 

associated with 3- to 4-fold lower GSTA1/2 enzyme expression (10).  We therefore 

evaluated whether serum GSTA1/2 concentrations differed by GSTA1 genotype.  The 

overall interaction term for genotype-by-diet was not statistically significant, nor were 

there any statistically significant differences in GSTA1/2 concentrations by GSTA1 

within diet (data not shown).    

 

Mean ± SD total ITC concentrations for the basal, single and double-dose 

cruciferous, and cruciferous-plus-apiaceous diets were 7.0 ± 36.2, 130.7 ± 57.1, 270.0 ± 

185.3, 107.9 ± 49.8 µmol/24 hours, respectively, indicating a dose-dependent increase in 

ITC excretion over the basal-diet period.  Correlations between GSTA1/2 concentrations 

and 24-h urinary ITC excretion were not statistically significant (P=0.46).   

 

Discussion 
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 In response to cruciferous vegetable feeding, GSTA1/2 concentrations were 

increased among individuals with combined GSTM1-null/GSTT1-null genotypes 

compared to their wildtype counterparts.  Few human intervention trials have evaluated 

the ability of GST genotype to modulate response to cruciferous vegetable intake on 

biomarkers.  In one controlled feeding trial, GSTM1 genotype-related changes were 

reported in transforming growth factor-β1 and epidermal growth factor signaling 

pathways in prostate tissue after 11 men consumed 400 g broccoli/week for six months 

(12); GSTM1+ individuals showed greater diet-induced changes in prostate tissue gene 

expression.  In our prior feeding study, the GSTA1/2 response to cruciferous vegetable 

feeding was greatest among GSTM1-null women (7).   

 

Lack of consistent GSTM1 modulation of crucifer effects across intervention 

studies is probably due to multiple factors, including tissue-specific responses, 

differences in endpoints measured, and the type and amount of crucifers fed.  In our 

studies, we used a mixture of crucifers, previously ~ 400 g/day for one week  (7) and 

currently ~300 – 1300 g/day for two weeks, whereas Traka et al. (12) used only broccoli 

(400 g/week).  Glucosinolate composition, both amount and type, varies substantially 

among different cruciferous vegetables (13, 14).  It is unknown whether these differences 

in glucosinolate profiles, and therefore ITC, lead to different biologic effects in humans; 

however, several laboratories have demonstrated differences in potency and function of 

ITC in vitro (15-17).  Longer-term, chronic consumption of cooked broccoli may also 

lead to changes in gut microbial enzymes and altered ITC exposure (18).   
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There were differences in response to crucifers between our prior study and the 

present one.  Previously, we found that GST-α response was greatest among GSTM1-null 

women.  Here, testing GSTM1-null/GSTT1-null genotypes combined, increases in 

GSTA1/2 concentrations were most marked in men.  This may reflect a difference in 

dose.  In our prior feeding trial, all participants received the same amount of vegetables 

daily.  Consequently, the vegetable dose-per-BW was different between men and women 

(approximately 7 g/kg BW for women and ~6 g/kg BW for men, P = 0.001).  In the 

present study, vegetable amounts were dosed by BW to determine whether our previous 

observation was due to a dose difference or other sex-related physiological effects.  The 

lower dose in men relative to that in women in the original study may partially explain 

why women responded to a greater extent previously while men had a greater response 

here.   There were also differences in baseline GSTA1/2 concentrations between sexes, 

between the studies.  GSTM1-null women had lower basal serum GST-α concentrations 

than men of both genotypes in the initial study, and GSTM1-null/GSTT1-null women had 

the higher basal serum GSTA1/2 concentrations in the present study.  These differences 

in concentrations during the control diet influence the comparisons of diets between men 

and women in both trials.  In either case, individuals with one or more null alleles 

responded to a greater extent than individuals with both intact alleles.  These results also 

suggest that the intact GSTT1 allele may be compensating for the lack of active GSTM1 

enzyme activity by playing a larger role in ITC metabolism among GSTM1-null 

individuals; when both alleles are absent, this compensation is no longer possible.  

Overlap in substrate specificity has been observed between different GST enzymes (6).  
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Thus, it is possible that other GST enzymes compensate for polymorphic isoforms that 

result in lower activity.  

 

Supplementation of apiaceous vegetables also affected GSTA1/2 concentrations, 

decreasing GSTA1/2 concentrations when consumed alone compared to the basal diet 

among GSTM1+/GSTT1+ men in the first study (7), and attenuating the effects of the 

cruciferous vegetables in the present study.  This underscores the challenge in 

interpreting the relationship between a complex, mixed diet and phenotype in the context 

of observational studies.  

 

Contrary to our hypothesis, there was not a dose-response between the single- and 

double-dose cruciferous diets, nor was there a significant difference in response between 

one and two weeks of supplementation.  Overall, GSTA1/2 concentrations increased 

significantly by Day 7 relative to the basal diet on both the single- and double-dose 

cruciferous diets then, by Day 11, were lower for the single-dose cruciferous diet, but 

were still increasing for the double-dose cruciferous diet.  These data are consistent with 

evidence of adaptation to crucifers (19).  However, it is not clear why GSTA1/2 

concentrations started to decrease after Day 11.  Perhaps there is adaptation of hepatic 

enzymes, as well as gut microbial enzymes, in the presence of chronic crucifer 

consumption.  

 

The strengths of this study include the controlled feeding-study design, 

recruitment of participants based on GSTM1 and GSTT1 genotypes, the two-week 
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duration of each study diet, blood collection at multiple time-points during each feeding 

period, and dosing based on BW.  Further, the stringent exclusion criteria minimized 

potential confounding due to other factors that may influence GST enzyme activity. 

 

A limitation of the study is our reliance on serum GSTA1/2 concentrations.  

Because GSTA1 is mainly found in the liver, the actual change in hepatic enzyme 

activity in response to vegetable feeding may be greater than what can be measured using 

circulating GSTA1/2 concentrations.  Another potential limitation is generalizability.  

The average intake of cruciferous vegetables in the U.S. is about 25 to 30 g/d (20).  

Although the cruciferous vegetables used in our study are commonly consumed in the 

U.S. diet, they are not usually consumed in the amounts fed in this study (e.g., 5 – 10 

servings/day or ~300 – 1300 g).  Finally, although we had sufficient power to detect 

overall diet and genotype differences, we were not sufficiently powered to evaluate sex-

by-genotype-by-diet interactions.  We based the sample size estimate for the current 

study on results from our previous GST study, which included a similar study population 

(7), and determined that we would have 80-96% power with a sample size of 64.  A post-

hoc calculation based on our present results indicates that our power was lower, ranging 

from 60-81% for overall effects.  Therefore, it is possible that significant results may also 

be explained by chance.   

 

In summary, cruciferous vegetable supplementation increased serum GSTA1/2 

concentrations, but the effect was most marked in GSTM1-null/GSTT1-null men.  In 



 14

addition, the combination of apiaceous vegetables and cruciferous vegetables attenuated 

the effects of cruciferous vegetables alone.   
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Table 1  Characteristics of study participants stratified by sex and GSTM1/GSTT1 genotypes*  
 
 Men Women 
 GSTM1+/GSTT1+

N=14 
GSTM1-/GSTT1+

N=14 
GSTM1-/GSTT1- 

N=5 
GSTM1+/GSTT1+

N=12 
GSTM1-/GSTT1+

N=13 
GSTM1-/GSTT1- 

N=9 
Age (yr) 
 
Height (m) 
 
Weight (kg) 
 
BMI (kg/m2) 
 
Race: 
          Caucasian 
          Asian 
          Other 
 
 Baseline GST-α  
(pg/ml) 
 

33.9 ± 6.1 
 

177 ± .07 
 

83.6 ± 12.1 
 

26.7 ± 3.3 
 
 

11 (79%) 
2 (14%) 
1 (7%) 

 
5070 ± 374 

 

30.4 ± 7.0 
 

178 ± .07 
 

77.6 ± 11.6 
 

24.4 ± 2.3 
 
 

9 (64%) 
5 (36%) 

0 
 

8379 ± 1106 
 

29.7 ± 6.0 
 

174 ± .08 
 

76.3 ± 11.4 
 

25.3 ± 3.4 
 
 

3 (60%) 
2 (40%) 

0 
 

5270 ± 587 
 

28.2 ± 5.8 
 

162 ± .07 
 

59.7 ± 9.1 
 

22.8 ± 2.6 
 
 

8 (67%) 
4 (33%) 

0 
 

4923 ± 415 
 

30.3 ± 5.3 
 

165 ± .07 
 

61.2 ± 9.2 
 

22.5 ± 2.5 
 
 

9 (69%) 
2 (15%) 
2 (15%) 

 
2692 ± 150 

 

28.7 ± 3.5 
 

162 ± .08 
 

61.9 ± 12.8 
 

23.3 ± 4.0 
 
 

3 (33%) 
4 (44%) 
2 (22%) 

 
4239 ± 416 

 

*No significant differences in baseline characteristic means ± SD across genotypes  
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Table 2  Serum GST-α concentrations by GSTM1/GSTT1 genotype, sex, and diet: the ratio between response to basal and 
vegetable diets  

 Diet Periodsa 
 
 
 
 

Genotype  

GST-α, pg/ml Ratiosb

 
 

Basalc 

 
Single/ 
Basal 

 
Double/ 

Basal 

 
Double/ 
Single 

 
Single + 

Apiaceous/ 
Basal 

 
Single + 

Apiaceous/ 
Single 

 
Single + 

Apiaceous/ 
Double 

Overall (n=67) 
 
GSTM1+/GSTT1+ 
   (n=26) 
GSTM1-null/GSTT1+ 
   (n=31) 
GSTM1-null/GSTT1-null 
   (n=14) 
 
GSTM1+/GSTT1+ 

Men (n=14) 
Women (n=12) 

GSTM1-null/GSTT1+ 
Men (n=16) 
Women (n=15) 

GSTM1-null/GSTT1-null 
Men (n=5) 
Women (n=9) 

 

3480 ± 155 
 

3161 ± 212 
 

3500 ± 223 
 

3811 ± 371 
 
 
 

2863 ± 272 
3490 ± 336 

 
3836 ± 342 
3192 ± 303 

 
3923 ± 578 
3701 ± 468 

1.10 ± 0.05d

 
1.02 ± 0.06 

 
1.02 ± 0.06 

 
1.28 ± 0.12c 

 
 
 

1.06 ± 0.09 
0.98 ± 0.08 

 
0.96 ± 0.08 
1.08 ± 0.09 

 
1.41 ± 0.19d 
1.16 ± 0.14 

1.13 ± 0.05d

 
1.16 ± 0.07d 

 
1.07 ± 0.06 

 
1.18 ± 0.12 

 
 
 

1.26 ± 0.11d 
1.06 ± 0.09 

 
1.02 ± 0.08 
1.13 ± 0.09 

 
1.35 ± 0.19d 
1.02 ± 0.14 

1.03 ± 0.04 
 

1.14 ± 0.07d 

 
1.05 ± 0.06 

 
0.92 ± 0.09 

 
 
 

1.19 ± 0.10d 
1.09 ± 0.10 

 
1.06 ± 0.08 
1.05 ± 0.09 

 
0.96 ± 0.14 
0.88 ± 0.11 

1.02 ± 0.04 
 

1.10 ± 0.07 
 

1.00 ± 0.06 
 

0.98 ± 0.10 
 
 
 

1.20 ± 0.11d 
1.00 ± 0.09 

 
1.01 ± 0.08 
0.98 ± 0.08 

 
0.91 ± 0.13 
1.05 ± 0.14 

0.93 ± 0.04 
 

1.08 ± 0.07 
 

0.98 ± 0.06 
 

0.77 ±0.08d 

 
 
 

1.13 ± 0.10 
1.02 ± 0.09 

 
1.05 ± 0.08 
0.91 ± 0.08 

 
0.65 ± 0.09d 
0.91 ± 0.12 

0.90 ± 0.04d

 
0.95 ± 0.06 

 
0.93 ± 0.05 

 
0.83 ± 0.09 

 
 
 

0.96 ± 0.08 
0.94 ± 0.08 

 
0.99 ± 0.08 
0.87 ± 0.07 

 
0.67 ± 0.10d 
1.03 ± 0.14 

a Basal = fruit/vegetable-free; Single = single-dose cruciferous; double = double-dose cruciferous; all vegetable diets adjusted per kg 
BW.  
b The difference of the back-transformed LS-means between diets as indicated. 
c LS-means ± SE, adjusted for baseline and feeding period day 0 serum GST-α concentrations.  
d Significantly different at P<0.05. 
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Table 3  Serum GST-α concentrations by GSTM1/GSTT1 genotype, sampling day, and diet: the ratio between response to 
basal and vegetable diets 
 
 

 
 
 

Genotype 

Diet Periodsa 

GST-α, pg/ml Ratiosb 
 
 

Basalc 

 
Single/ 
Basal 

 
Double/ 

Basal 

 
Double/ 
Single 

 
Single + 

Apiaceous/ 
Basal 

 
Single + 

Apiaceous/ 
Single 

 
Single + 

Apiaceous/ 
Double 

Overall 
Day 7 
Day 11 
Day 14 
 

GSTM1+/GSTT1+ 
Day 7 
Day 11 
Day 14 
 

GSTM1-null/GSTT1+ 
Day 7 
Day 11 
Day 14 
 

GSTM1-null/GSTT1-null 
Day 7 
Day 11 
Day 14 

 

 
3433 ± 185 
3520 ± 190 
3488 ± 188 

 
 

3263 ± 265 
3081 ± 250 
3143 ± 255 

 
 

3637 ± 278 
3550 ± 272 
3319 ± 257 

 
 

3409 ± 402 
3989 ± 470 
4068 ± 480 

 
1.13 ± 0.07d 
1.11 ± 0.07 
1.05 ± 0.06 

 
 

1.00 ± 0.09 
1.03 ± 0.09 
1.03 ± 0.09 

 
 

0.96 ± 0.08 
1.03 ± 0.09 
1.07 ± 0.09 

 
 

1.50 ± 0.19d 
1.31 ± 0.17d 
1.06 ± 0.14 

 
1.14 ± 0.07d 
1.15 ± 0.07d 
1.11 ± 0.07 

 
 

1.12 ± 0.10 
1.23 ± 0.11d 
1.13 ± 0.10 

 
 

1.08 ± 0.09 
0.99 ± 0.08 
1.15 ± 0.10 

 
 

1.21 ± 0.17 
1.25 ± 0.17 
1.07 ± 0.15 

 
1.00 ± 0.06 
1.03 ± 0.06 
1.06 ± 0.06 

 
 

1.11 ± 0.10 
1.20 ± 0.11c 
1.09 ± 0.10 

 
 

1.12 ± 0.10 
0.96 ± 0.08 
1.08 ± 0.09 

 
 

0.81 ± 0.11 
0.96 ± 0.13 
1.01 ± 0.14 

 
1.00 ± 0.06 
1.07 ± 0.07 
1.01 ± 0.06 

 
 

1.10 ± 0.10 
1.11 ± 0.10 
1.09 ± 0.10 

 
 

0.93 ± 0.08 
1.01 ± 0.08 
1.05 ± 0.09 

 
 

0.97 ± 0.14 
1.09 ± 0.15 
0.89 ± 0.13 

 
0.88 ± 0.05d 
0.96 ± 0.06 
0.96 ± 0.06 

 
 

1.09 ± 0.10 
1.08 ± 0.09 
1.06 ± 0.09 

 
 

0.97 ± 0.08 
0.99 ± 0.08 
0.98 ± 0.08 

 
 

0.65 ± 0.09d 
0.84 ± 0.12 
0.84 ± 0.12 

 
0.88 ± 0.05d 
0.93 ± 0.06 
0.90 ± 0.06 

 
 

0.98 ± 0.09 
0.90 ± 0.08 
0.97 ± 0.09 

 
 

0.86 ± 0.07 
1.03 ± 0.09 
0.91 ± 0.08 

 
 

0.80 ± 0.12 
0.88 ± 0.13 
0.83 ± 0.12 

aBasal = fruit/vegetable-free; Single = single-dose cruciferous; double = double-dose cruciferous; all vegetable diets adjusted per kg 
BW.  
b The difference of the back-transformed LS-means between diets as indicated. 
c LS-means ± SE, adjusted for baseline and feeding period day 0 serum GST-α concentrations. 
d Significantly different at P<0.05. 


