652 research outputs found

    Crystallization process development and spherical agglomerates for pharmaceutical processing applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 102-107).The control of crystallization steps is essential in the production of many materials in the pharmaceutical, materials, and chemical industries. Additionally, due to increasing costs of research and development, reductions in manufacturing costs by moving from batch to continuous manufacturing are necessary to sustain profitability of the pharmaceutical industry. Two different projects were researched to progress towards this goal. The first was the demonstration of a continuous manufacturing platform. The second goal was the development of new crystallization techniques. Two continuous crystallization processes were developed as part of a demonstration unit for continuous manufacturing of Aliskiren hemifumarate. The first process was an anti-solvent crystallization of an intermediate. The second process was a continuous reactive crystallization developed for the final product. The processes were able to crystallize the two compounds with both high yield (>90%) and purity (>99%). Population balance modeling was performed and experimental data were fit to the model to obtain kinetic parameters for crystal growth and nucleation for both systems. The models were used to optimize crystal purity and yield of the products. In addition, this thesis describes two separate projects involving spherical agglomerates. In the first study, acetaminophen was shown to crystallize significantly faster in the presence of spherical agglomerates of lactose than single crystal lactose. An epitaxy study and molecular dynamics simulations showed that the (141̄)/(001) pairing of faces showed coincident lattice matching and favorable energy interaction. Maximizing the number of substrate faces available for interaction increases the chance for a lattice match between the substrate and the crystallizing material which can be useful for controlling and increasing nucleation kinetics. Finally, water-in-oil emulsions were used to make composite spherical agglomerates with two components: a heterosurface, and a target compound that does not typically crystallize as spherical agglomerates on its own. The generated composite agglomerates were relatively monodisperse and were characterized using optical microscopy, scanning electron microscopy, x-ray powder diffraction, and differential scanning calorimetry. This technique could potentially be applied to other hydrophilic compounds, in particular water-soluble pharmaceuticals compounds, in order to change crystal morphology to spherical agglomerates in order to simplify downstream processing.by Justin Quon.Ph.D

    The Challenge of Assessing Advocacy: Strategies for a Prospective Approach to Evaluating Policy Change and Advocacy

    Get PDF
    Presents three priorities for conducting evaluations, discusses the challenges in monitoring and assessing policy change grants, and presents seven principles of effective policy change evaluation

    Developmental Expression of Monocarboxylate Transporter 1 and 4 in Rat Liver

    Get PDF
    PURPOSE: Monocarboxylate transporters (MCT) are proton-coupled integral membrane proteins that control the influx and efflux of endogenous monocarboxylates such as lactate, acetate and pyruvate. They also transport and mediate the clearance of drugs such as valproate and gamma-hydroxybutyrate. CD147 functions as ancillary protein that chaperones MCT1 and MCT4 to the cell membrane. There is limited data on the maturation of MCT and CD147 expression in tissues related to drug distribution and clearance. The objective of the present study was to quantify hepatic MCT1, MCT4, and CD147 mRNA, whole cell and membrane protein expression from birth to sexual maturity. METHODS: Liver tissues were collected from male and female Sprague Dawley rats at postnatal days (PND) 1, 3, 5, 7, 10, 14, 18, 21, 28, 35, and 42 (n = 3 - 5). Hepatic mRNA, total and membrane protein expression of MCT1, MCT4, and CD147 was evaluated via qPCR and western blot. RESULTS: MCT1 mRNA and protein demonstrated nonlinear maturation patterns. MCT1 and CD147 membrane protein exhibited low expression at birth, with expression increasing three-fold by PND14, followed by a decline in expression at sexual maturity. MCT4 mRNA had highest expression at PND 1, with decreasing expression towards sexual maturity. In contrast, MCT4 membrane protein exhibited minimal expression from birth through weaning before a 10-fold surge at PND35, whereupon there was a sharp decline in expression at PND42. There was a significant positive correlation between MCT1 and CD147 whole cell and membrane expression, while MCT4 membrane expression demonstrated a weak negative correlation with CD147. CONCLUSION: Our study elucidates the transcriptional and translational maturation patterns of MCT1, MCT4 and CD147 expression, with isoform- dependent differences in the liver. Changes in transporter expression during development may greatly influence drug distribution and clearance in pediatric populations

    A Meta-Analysis Of Resource Pulse-Consumer Interactions

    Get PDF
    Resource Pulses are infrequent, large-magnitude, and short-duration events of increased resource availability. They include a diverse set of extreme events in a wide range of ecosystems, but identifying general patterns among the diversity of pulsed resource phenomena in nature remains an important challenge. Here we present a meta-analysis of resource pulse-consumer interactions that addresses four key questions: (1) Which characteristics of pulsed resources best predict their effects on consumers? (2) Which characteristics of consumers best predict their responses to resource pulses? (3) How do the effects of resource Pulses differ in different ecosystems? (4) What are the indirect effects of resource pulses in communities\u27? To investigate these questions, we built a data set of diverse Pulsed resource-consumer interactions from around the world, developed metrics to compare the effects of resource pulses across disparate systems, and conducted multilevel regression analyses to examine the manner in which variation in the characteristics of resource pulse-consumer interactions affects important aspects Of Consumer responses. Resource pulse magnitude, resource trophic level, resource Pulse duration, ecosystem type and subtype, consumer response mechanisms, and consumer body mass were found to be key. explanatory factors predicting the magnitude, duration, and timing of consumer responses. Larger consumers showed more persistent responses to resource pulses, and reproductive responses were more persistent than aggregative responses. Aquatic systems showed shorter temporal lags between peaks of resource availability and consumer response compared to terrestrial systems, and temporal lags were also shorter for smaller consumers compared to larger consumers. The magnitude of consumer responses relative to their resource pulses was generally smaller for the direct consumers of primary resource pulses, compared to consumers at greater trophic distances from the initial resource pulse. In specific systems, this data set showed both attenuating and amplifying indirect effects. We consider the mechanistic processes behind these patterns and their implications for the ecology of resource pulses

    Total Cellular ATP Production Changes With Primary Substrate in MCF7 Breast Cancer Cells.

    Get PDF
    Cancer growth is predicted to require substantial rates of substrate catabolism and ATP turnover to drive unrestricted biosynthesis and cell growth. While substrate limitation can dramatically alter cell behavior, the effects of substrate limitation on total cellular ATP production rate is poorly understood. Here, we show that MCF7 breast cancer cells, given different combinations of the common cell culture substrates glucose, glutamine, and pyruvate, display ATP production rates 1.6-fold higher than when cells are limited to each individual substrate. This increase occurred mainly through faster oxidative ATP production, with little to no increase in glycolytic ATP production. In comparison, non-transformed C2C12 myoblast cells show no change in ATP production rate when substrates are limited. In MCF7 cells, glutamine allows unexpected access to oxidative capacity that pyruvate, also a strictly oxidized substrate, does not. Pyruvate, when added with other exogenous substrates, increases substrate-driven oxidative ATP production, by increasing both ATP supply and demand. Overall, we find that MCF7 cells are highly flexible with respect to maintaining total cellular ATP production under different substrate-limited conditions, over an acute (within minutes) timeframe that is unlikely to result from more protracted (hours or more) transcription-driven changes to metabolic enzyme expression. The near-identical ATP production rates maintained by MCF7 and C2C12 cells given single substrates reveal a potential difficulty in using substrate limitation to selectively starve cancer cells of ATP. In contrast, the higher ATP production rate conferred by mixed substrates in MCF7 cells remains a potentially exploitable difference

    Evaluating an International Facial Trauma Course for Surgeons: Did We Make a Difference?

    Get PDF
    Study Design:Retrospective data analysis study.Objective:Attending continuing professional development (CPD) and continuing medical education (CME) activities is a necessity for practicing surgeons in most parts of the world. To enhance best practices in conducting CME/CPD, objective evaluation of these events is crucial. This article aims to evaluate one such international standardized CPD course conducted for facial surgeons across the globe. The Management of Facial Trauma course was developed by an international planning committee of experienced surgeons and has been implemented in all regions of the world.Method:This 2-day course is delivered using a combination of short lectures, small group discussions, and practical hands-on activities. Data collected from pre- and post-course evaluations of 86 Management of Facial Trauma courses conducted worldwide from 2017-2019 were collated and analyzed.Results:Participant demographics and experience levels varied slightly across the regions. Evaluation of the course effectiveness revealed overall high ratings for educational impact, content usefulness, and faculty performance.Conclusion:Our results indicated that this standardized course met the audience needs and enabled participants to plan changes in clinical practice. In addition, it confirmed that the course was relevant across different specialties and across different cultures and countries.</div

    Nitrogen Increases Early-Stage and Slows Late-Stage Decomposition Across Diverse Grasslands

    Get PDF
    To evaluate how increased anthropogenic nutrient inputs alter carbon cycling in grasslands, we conducted a litter decomposition study across 20 temperate grasslands on three continents within the Nutrient Network, a globally distributed nutrient enrichment experiment We determined the effects of addition of experimental nitrogen (N), phosphorus (P) and potassium plus micronutrient (Kμ) on decomposition of a common tree leaf litter in a long-term study (maximum of 7 years; exact deployment period varied across sites). The use of higher order decomposition models allowed us to distinguish between the effects of nutrients on early- versus late-stage decomposition. Across continents, the addition of N (but not other nutrients) accelerated early-stage decomposition and slowed late-stage decomposition, increasing the slowly decomposing fraction by 28% and the overall litter mean residence time by 58%. Synthesis. Using a novel, long-term cross-site experiment, we found widespread evidence that N enhances the early stages of above-ground plant litter decomposition across diverse and widespread temperate grassland sites but slows late-stage decomposition. These findings were corroborated by fitting the data to multiple decomposition models and have implications for N effects on soil organic matter formation. For example, following N enrichment, increased microbial processing of litter substrates early in decomposition could promote the production and transfer of low molecular weight compounds to soils and potentially enhance the stabilization of mineral-associated organic matter. By contrast, by slowing late-stage decomposition, N enrichment could promote particulate organic matter (POM) accumulation. Such hypotheses deserve further testing

    Determining the Electronic Confinement of a Subsurface Metallic State

    Get PDF
    Dopant profiles in semiconductors are important for understanding nanoscale electronics. Highly conductive and extremely confined phosphorus doping profiles in silicon, known as Si:P δ-layers, are of particular interest for quantum computer applications, yet a quantitative measure of their electronic profile has been lacking. Using resonantly enhanced photoemission spectroscopy, we reveal the real-space breadth of the Si:P δ-layer occupied states and gain a rare view into the nature of the confined orbitals. We find that the occupied valley-split states of the δ-layer, the so-called 1Γ and 2Γ, are exceptionally confined with an electronic profile of a mere 0.40 to 0.52 nm at full width at half-maximum, a result that is in excellent agreement with density functional theory calculations. Furthermore, the bulk-like Si 3pz orbital from which the occupied states are derived is sufficiently confined to lose most of its pz-like character, explaining the strikingly large valley splitting observed for the 1Γ and 2Γ states

    Plant Species\u27 Origin Predicts Dominance and Response to Nutrient Enrichment and Herbivores in Global Grasslands

    Get PDF
    Exotic species dominate many communities; however the functional significance of species\u27 biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands
    corecore