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Abstract

Dopant profiles in semiconductors are important for understanding nanoscale electronics. Highly

conductive and extremely confined phosphorus doping profiles in silicon, known as Si:P δ-layers,

are of particular interest for quantum computer applications, yet a quantitative measure of their

electronic profile has been lacking. Using resonantly enhanced photoemission spectroscopy, we

reveal the real-space breadth of the Si:P δ-layer occupied states and gain a rare view into the

nature of the confined orbitals. We find that the occupied valley-split states of the δ-layer, the

so-called 1Γ and 2Γ, are exceptionally confined with an electronic profile of a mere 0.40 to 0.52 nm

at full-width half-maximum; a result that is in excellent agreement with density functional theory

calculations. Furthermore, the bulk-like Si 3pz orbital from which the occupied states are derived,

is sufficiently confined to lose most of its pz-like character, explaining the strikingly large valley

splitting observed for the 1Γ and 2Γ states.
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Exceptionally sharp and high density doping profiles in semiconductors (known as δ-

layers) have been attracting interest over the last few years both because of their role as a

platform for prototype quantum-computation components1–3 and for the fascinating insight

into reduced dimension electronics.4–9 Shallow buried layers of phosphorus (P) in bulk silicon

(Si) are found to be a particularly suitable platform because of the high doping densities10

(and hence low sheet resistances11,12) and the almost atomically sharp confinement potentials

which can be formed.13 Such physical confinement gives rise to a nearly-free electron-like

occupied band dispersion, the calculation of which has been the centre of much effort.13–19

The occupied bandstructure has also recently been verified by photoemission spectroscopy

(PES).6,20 The experimental verification is only possible because of a strongly enhanced

photoemission intensity which occurs when an electron from a two dimensional (2D) initial

state is photo-emitted via a well matched bulk-like final state.20,21

Whilst the growth and characterisation of Si:P δ-layers has been widely studied using

a range of techniques, important questions remain about the physical confinement of the

2D electronic states. The physical placement of the dopant atoms can be controlled and

measured,10,11,22 but the electronic confinement, which is the key to understanding electronic

parameters such as valley splitting, has been accessible only through calculations.6,13–19 Here

we show that the strongly peaked photoemission enhancement which allows the δ-layer

states to be visible, also allows the physical profile of their wavefunction to be extracted.

In particular, we demonstrate that not only can the breadth of the spectral envelope be

investigated, but also the Bloch-like part of the wavefunction and the photoionisation cross-

section. These parameters are found to be related to the bulk-like conduction band minimum

(CBM) from which the occupied δ-layer states are derived and give a further insight into

the nature of the δ-layer electronic states and their confinement.

The presence of a high density, atomically sharp, n-type dopant layer in a bulk semicon-

ductor causes the bulk CBM to become partially occupied in the region close to the dopant

plane, thus creating a confined metallic layer (see Fig. 1 (a)). Density Functional Theory

(DFT) and Angle Resolved Photoemission Spectroscopy (ARPES) have revealed that the

two partially occupied states, referred to as 1Γ (cyan) and 2Γ (magenta), have a dispersion

which is well approximated as parabolic, with the band minimum at the centre of the layer’s

2D Brillouin zone (see Figs. 1 (b) & (c), respectively). The measured valley splitting, or

energy separation of 1Γ and 2Γ, is large compared to the DFT calculated valley splitting
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FIG. 1. δ-layer bandstructure and density of states. (a) Idealised schematic of the δ-layer sample

where depth z = 0 corresponds to the sample surface and z = zδ the depth at which the dopants

are placed. ∆z and the red shading indicate the breadth of the electrical confinement (dopant

atoms are indicated as larger dark spheres). (b) DFT calculated bandstructure for an atomically

sharp dopant plane (bulk CBM is shaded grey), and (c) the corresponding measured bandstructure

(adapted from Ref.6). The yellow shading indicates the region which contributes to the angle

integrated photoemission intensity in Fig. 2.

shown in Fig. 1 (b). However, the valley splitting in DFT calculations has been shown to be

highly sensitive to the in-plane arrangement of phosphorus atoms in the δ-plane (see Ref.13

and the Supplementary Material of Ref.6), the details of which have not been observable

experimentally. In all other aspects than the valley splitting, the agreement between DFT

and measurements is excellent.

RESULTS

A photoemission experiment performed around normal emission, with a suitable angular

integration (±1.7◦) can be taken as a measure of the occupied density of states (DOS). The

DOS integrated in this range consists of contributions from both 1Γ and 2Γ (see Fig. 1 (c)).

Photoemission is also sensitive to the available unoccupied states; in order to transport the

excited electron from the buried δ-layer to the surface, the final state must be delocalised

from the δ-layer – in other words it is a 3D bulk-like state. Since both energy and momen-
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tum are conserved in the excitation,23 the photoemission probability depends strongly on

the availability of a final state of suitable energy and momentum. Probing this condition

ultimately allows us to measure the real-space profile of the 2D initial state.

Since the photo-excitation conserves energy, varying the excitation energy changes

the availability of final states. This is seen in the experimental data (Fig. 2 (a)) as

a change in the photoemission intensity near the Fermi level. Using the relationship

k⊥ ≈
√

(2m/h̄2)(V0 + hν − Eb − Φ), where V0 is the inner potential and Φ is the sam-

ple workfunction,23 the photon energy scale can be converted simply into units of crystal

momentum (Fig. 2 (b)). Integrating the binding energy region -0.1 to +0.1 eV (i.e. the

total intensity from the δ-layer initial states; 1Γ and 2Γ) makes the resonant behaviour more

clear; the integrated intensity from Fig. 2 (b) is plotted in Fig. 2 (d). The photoemission

intensity can generally be described as a function which is periodic in momentum, with a

characteristic width in k⊥. A synchrotron beamline with a lower photon energy range allows

an additional period at lower k⊥ to be observed (Fig. 2 (c))24.

Due to the 3D nature of the bulk-like final state (bf ), the final state will show a periodic

dispersion in energy as a function of momentum k⊥.21,23,25 The 2D nature of the initial states

1Γ and 2Γ results in a lack of such dispersion, thus they are depicted at constant binding

energy (see Fig. 3 (a)). Since the photo-excitation involves a well defined amount of energy,

and a negligible amount of k⊥,23 it is näıvely possible to see where the photo-excitation can

occur. At two different photon energies chosen for illustration, hν1 and hν2, excitation from

2Γ to the bulk state can only occur for the particular values of k⊥ indicated in Fig. 3 (a).

In fact, it is this consideration (in combination with the assumption of a free-electron-like

vacuum state) which allows the experimental data (Fig. 2 (b-d)) to be plotted in units of

k⊥.23
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FIG. 2. Photoemission measurements of the δ-layer states. (a) Photoemission intensity around

the Fermi level for a range of photon energies (darker shades indicate higher intensity). The

Fermi level (EF ) and the approximate energy of the valence band is indicated. The intensity has

been normalised to the beamline flux. The markers ‘C’ and ‘Fe’ indicate where normalisation is

hindered by strong absorption by the beamline optics. Within the band gap, the photoemission

intensity is enhanced at particular photon energies (enclosed in yellow ellipses). (b) The same

photoemission intensity, converted into units of k⊥ with five enhancements indicated by yellow

ellipses. (c) Integrated photoemission intensity for a similar sample, at smaller k⊥ (the absolute

intensity cannot be compared between panels). (d) 1–5: Photoemission intensity (integrated in the

energy range -0.1 to +0.1 eV) for the range of k⊥ corresponding to each enhancement (as numbered

in panel b). The blue line is a curve of form I ∝ (χ − 1)2/(1 + χ2 − 2χ cos(k⊥a − π)) (see main

text for details).
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FIG. 3. Schematic of the photoemission process. (a) Photoemission between a 2D initial state (2Γ)

and a bulk-like final state (bf ). In the simple picture, for specific photon energies (hν1 and hν2)

the photo-excitation can only occur at particular values of k⊥ such that energy and momentum are

conserved. (b) initial state and (c) final state models; the states are described by Lorentzian and

semi-infinite distributions, respectively, but also comprise a Bloch-like part. The initial state (1Γ or

2Γ) is centred around the dopant plane 1.4 nm beneath the surface. (d) The same final state with an

exponential decay describing the accessibility to photoemission by including a photoelectron MFP.

(e) Fourier transform of initial and final states, showing that they have spectral weight over a range

of k⊥. The broad black arrow shows that photo-excitation can occur, even though the centre values

of k⊥ are mismatched. (f) The same photo-excitation in the schematic bandstructure. Although

2Γ is non-dispersive, the spectral weight is strongly enhanced at particular k⊥ (indicated by the

magenta ellipse). The final state is dispersive with a non-zero width in k⊥. (g) The intensity of the

convolution of the initial and final states, showing a strongly peaked distribution. Our numerical

simulation (red) together with the expression from Ref.21, with χ=3. In this particular case, a

photoelectron MFP of 1 nm, and an initial state FWHM of 0.3 nm are used. (h) Dependence of

the FWHM of the simulated photoemission intensity on the initial state FWHM and photoelectron

MFP. The horizontal grey band indicates the experimentally determined FWHM=0.3kBZ ±10 %

and the vertical grey band indicates the corresponding range of initial state FWHM.

DISCUSSION

Although the initial states are dispersionless in k⊥, they are not of uniform intensity. This

can be seen from a Fourier transform (FT) of the real-space distribution, which reveals that
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the distribution in k⊥ has a width defined by the inverse of the real-space breadth, centred

on the Bloch momentum (Fig. 3 (e)). 1Γ and 2Γ are derived from the bulk CBM close to

the out-of-plane Brillouin Zone boundary, hence they have Bloch momentum similar to that

of the BZ boundary, kBZ .20 The strongly peaked FT intensity is the origin of the strongly

peaked photoemission intensity; at particular photon energies, photo-excitation can occur

at values of k⊥ which match the initial state Bloch momentum where the majority of the

initial state spectral weight is found, with a suitable final state.

In fact, the situation is not quite so simple since the final state breadth must also be

considered. Since the final state is bulk-like, it can be depicted as a Bloch-like oscillation

extending infinitely into the bulk (Fig. 3 (c)). However, the final state probed by photoemis-

sion is attenuated into the bulk by an exponential decay, and the exponent depends on the

mean-free-path (MFP) of the photoelectron, which in turn depends on the kinetic energy.

Fig. 3 (d) depicts a final state modulated by a realistic MFP. The FT of this final state now

has a non-zero width in k⊥ (see Fig. 3 (e)).

The implication of the finite FT widths is that the simplified picture of photoemission

presented in Fig. 3 (a) needs to be modified; photo-excitation can occur at values of k⊥ which

are not well matched to a final state, but the probability is reduced. This is illustrated in

Fig. 3 (f), where the photo-excitation is depicted by the broad arrow terminating at the

righthand side of the final state whilst originating from the lefthand side of the initial state.

By comparison with the FT amplitudes presented in Fig. 3 (e), it can be seen that such

a photo-excitation can occur since both the initial and final states have a non-negligable

intensity here. In other words, the photoemission probability at a particular photon energy

depends on the overlap of the initial state and final state FTs. As the photon energy is

varied, there will be values at which the overlap is maximised, thus accounting for the peaked

photoemission intensity observed in the measurements. The peak shape is determined by

the convolution of the initial and final states (Fig. 3 (g)). More specifically, the FWHM of

the peaked photoemission intensity depends on the real-space breadth of the initial state,

and the MFP assumed for the final state. The FWHM of the photoemission intensity is

evaluated for a realistic range of MFP (0.6 to 1.2 nm for the energy range 150 to 1000 eV26

and for a realistic range of initial state breadths (Fig. 3 (h)).

The simulation presented above focusses on the novel case of a sub-surface 2D dopant

plane. However, photoemission from other 2D initial states (in particular, surface states) is
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FIG. 4. (a) Calculated Si 3s (blue) and 3p (green) photoionisation crosssections (adapted from

Ref.29) together with the experimental photoemission intensity (corrected for beamline flux and

integration time). (b) The DFT calculated confinement potential, with the experimentally deter-

mined Fermi level and the approximate energies of the 1Γ and 2Γ band minima indicated. The

breadth of the confinement potential at these energies is 0.68 nm (EF ), 0.36 nm (2Γ) and 0.30 nm

(1Γ). (c) A schematic of the confined 3p orbitals, showing the s-like shape of the confined pz

orbital.

well understood, and a peaked photoemission intensity also occurs.21,25 This peaked intensity

has been described by I ∝ (χ−1)2/(1 +χ2−2χ cos(k⊥a−π)), where I is the photoemission

intensity, a is the reciprocal unit cell and χ is a parameter describing the bandwidth of

the 2D orbital relative to the bulk and the self-energy of the surface state (see Ref.21 for

full description). In order to facilitate a comparison between our simulation involving a

sub-surface 2D initial state and earlier work on surface localised states, a curve of this form

has been overlaid on both our numerical simulation presented in Fig. 3 (g), and the data

in Fig. 2(d). In our case χ is unknown, but best agreement with our simulation is found

when χ ≈ 3 (c.f. χ=1.6 and 1.8 for the two surface states considered in Ref.21). In other

words, although our initial state has quite another origin than the surface states considered

in earlier works, the photoemission model is very similar.

The FWHM of the measured photoemission intensity peaks has been found to be ≈

0.9 Å−1, equivalent to ≈ 0.3 kBZ , with an uncertainty of ≈ 10%. Our simulations show that

this corresponds to a real-space FWHM of the initial state of just 0.40 to 0.52 nm (assuming

an MFP in the range 0.6 to 1.2 nm). Although the estimate for the initial state’s FWHM

depends on the estimate of the MFP, in this range the dependence is weak; as seen in Fig.
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3(h). This initial state breadth is exceptionally sharp, especially given that the distribution

of dopant atoms is thought to be somewhat broader than this.11 However, the same DFT

calculation used to generate the bandstructure in Fig. 1 (b) yields a confinement potential

on this length scale (Fig. 4 (b)). By aligning the DFT energy scale with the experimentally

determined Fermi level, the confinement breadth at particular energies can be estimated.

The breadth of the confinement potential is 0.68 nm (at EF ), 0.36 nm (at the 2Γ band

minimum) and 0.30 nm (at the 1Γ band minimum)27.

As well as periodic oscillations in the photoemission intensity, the peak intensity rapidly

diminishes with increasing k⊥
28. This is due to a decreasing photoionisation cross-section

and is a common observation which is well understood.29 Since the 1Γ and 2Γ states are

primarily derived from bulk Si 3pz orbitals, one could expect that their photoionisation

cross-section follows the calculated Si 3p values (see Fig. 4 (a)). However, the observed

decay is weaker than the calculated curve, and is more similar to (but still weaker than) the

calculated Si 3s cross-section. This is another consequence of the strong confinement; in the

δ-layer, the pz orbital is so strongly confined that it is more akin to a small, nearly-spherical

s-orbital (see Fig. 4 (c)). Thus, the weakly decaying cross-section is indicative of an orbital

which is very small compared to a bulk-like Si 3pz.

It is intriguing that such a sharp δ-layer confinement can exist, when the distribution

of dopant atoms is known to be broader.11 Since the photoemission experiment is giving

information on the initial states only when they are occupied, the relevant breadth corre-

sponds to a metallic dopant density, in other words, it is the breadth at the ‘tip’ of the

dopant distribution which is relevant, rather than its FWHM. By comparison with Ref.11, it

can be inferred that phosphorus densities in the order of ≈5×1020 cm−3 exist over a similar

breadth (i.e. 0.40 to 0.52 nm), thus it appears that dopant densities of this magnitude are

needed to create a metallic 2D layer – this doping density is significantly higher than in a

3D degenerate semiconductor, presumably because not all the donated carriers remain in

the 2D metallic region, but also contribute to the strong (but not metallic) n-type doping

of the surrounding silicon.

The out-of-plane confinement of the δ-layer states has wider implications for complex

dopant arrangements; for example, the fact that we observe a confinement FWHM equivalent

to just a few atomic spacings brings with it the implication that multiple δ-layers could be

treated as independent if their separation is much larger than this confinement length scale.
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Conversely, multiple stacked δ-layers with a separation comparable to this length scale would

be expected to interact. This view is supported by recent calculations,17,30 and forms the

basis of novel 3-D device architectures based on stacked δ-layers.31 Although our work has

focussed on the out-of-plane confinement of uniform 2D dopant structures, it is reasonable

to assume that a similar length scale defines the in-plane confinement of patterned dopant

structures, such as 1-D wires7 and 0-D quantum dots1 and interacting multiple quantum

dot devices.2,3

CONCLUSION

The combination of synchrotron photoemission, simulations and DFT calculations pro-

vides a detailed insight into the confinement of the Si 3pz derived states (1Γ and 2Γ) which

are responsible for the metallic 2D properties of a Si:P δ-layer.6,20 Strongly peaked photoe-

mission intensity is a consequence of a strongly confined initial state, and from the peak

width it is possible to reconstruct the real-space breadth. Excellent agreement is found

when the initial state is modelled as a Lorentzian envelope of FWHM 0.40 to 0.52 nm,

containing a Bloch-like wavefunction similar to that of the bulk CBM from which the 1Γ

and 2Γ states are derived. Such strong confinement results in the cross-section of the orbital

being modified away from that of an unconfined Si 3p orbital, as well as contributing to

an unusually large valley splitting. By comparison with measurements of the phospho-

rus distribution, it appears that the confinement is derived from the high density ‘tip’ of

the dopant distribution; indicating that the formation of a 2D metallic layer requires a

particularly high dopant density of around 5×1020 cm−3. DFT calculations are in good

agreement, not only in reproducing the band-structure, but also in producing a confinement

potential which is consistent with the experimental observations. Importantly, the approach

described here is not limited to Si:P, but is applicable to understanding any 2D metallic layer

which can be observed by photoemission. Furthermore, these results should provide valuable

insight into the robustness of such doping profiles and their bearing on nanoscale electronics.

Experimental details: δ-doped Si(001) samples are made in situ by first prepar-

ing a clean Si(001) sample (thermal annealing up to ≈ 1520 K in a base pressure of

≈ 2 × 10−10 mbar), and a sharp Si 2 × 1 reconstruction is seen by low energy electron
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diffraction (LEED). This is followed by deposition of ≈1/4 of a monolayer of phosphorus

dopants (from phosphine gas dosed at room temperature for 5 minutes at a pressure of

5 × 10−9 mbar) and subsequently incorporated into the surface by annealing to 520 K (as

described elsewhere10,11,22). An ≈1 nm thick silicon epilayer is formed atop the dopant

layer, using a thermal evaporator, and the coverage is monitored and estimated by the

relative intensities of the Si and P core levels acquired during the experiment. Such a cov-

erage is selected to ensure that a confinement potential is formed which remains accessible

by photoemission.6,20 Core-level spectroscopy measurements confirmed minimal phosphorus

dopant segregation for all anneal steps during sample preparation.

The data were collected at two beamlines, the Soft-X-Ray beamline (SXR) at the

Australian synchrotron (Melbourne)32 and at I4 beamline in MAX-IV laboratory (Lund,

Sweden).33 The measurements were performed at room temperature and the angular ac-

ceptance chosen to be approximately the same in both cases (±1.7◦ centred at normal

emission).

The data presented here have undergone an intensity normalization to the beamline flux

and the binding energy has been calibrated using a gold Fermi level.

DFT methods section: The 1Γ and 2Γ states (Fig. 1(b)) have been calculated using

the SIESTA code34 and the methods described by Carter et al. in Ref.17. An elongated

three-dimensional unit cell, a Double-Numerical-plus Polarization (DNP) atom centered

basis set, and the Generalized-Gradient Approximation (GGA-PBE)35 were used in order

to represent the δ-layer. A suitable degree of electronic separation in the direction normal

to the dopant plane, is guaranteed by the separation of 40 atomic layers between the δ-layer

and its periodic images. In the direction parallel to the dopant plane, a 4× 4 simulation cell

of 16 atoms has been adopted (in particular, 4 P and 12 Si in the δ-layer, the same as the

experimental concentration of 1/4 ML, or 2.2× 1014 cm−210). The resulting band structure,

showing the 1Γ and 2Γ states is represented in Fig. 1(b).
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