811 research outputs found

    Modulation of stem cell adhesion and morphology via facile control over surface presentation of cell adhesion molecules

    Get PDF
    To encourage cell adhesion on biomaterial surfaces in a more facile, safe, and low-cost fashion, we have demonstrated a noncovalent approach to spatially conjugate β-cyclodextrin (β-CD) modified peptide sequences onto self-assembled adamantane-terminated polystyrene-b-poly(ethylene oxide) (PS-PEO-Ada) films through inclusion complexing interactions between β-CDs and adamantane. By simply blending various ratios of unmodified PS-PEO with a newly synthesized PS-PEO-Ada, we produced PS polymer films that displayed well-organized adamantine-decorated cylindrical PEO domains with varying average interdomain spacings ranging from 29 to 47 nm. The presence of the adamantane moiety at the terminal end of the PEO chain permitted rapid, and importantly, oriented attachment of β-CD functionalized peptides onto these surfaces. This one-step process not only converted these proven nonadherent PS-PEO surfaces into adherent surfaces, but also permitted precisely controlled presentation and surface distribution of the conjugated peptides. The utility of these surfaces as cell culture substrates was confirmed with human mesenchymal stem cells (hMSCs). We observed that with increasing PS-PEO-Ada content in the PEO cylindrical domains, these novel polymer films displayed improved cell attachment and spreading, with notable differences in hMSC morphology. We further confirmed that this novel PS-PEO-Ada surface provides a flexible platform for facile conjugation of mixtures of β-CDs functionalized with different peptides, specifically RGD and IKVAV peptides. The cell adhesion and spreading assays on these surfaces indicated that the morphologies of hMSCs can be easily manipulated, while no significant changes in cell attachment were observed. The lock-and-key peptide conjugation technique presented in this work is applicable to any substrate that incorporates a moiety capable of forming inclusion complexes with α-, β-, and γ-CDs, providing a facile and flexible method by which to construct peptide-conjugated biomaterial substrates for a multitude of applications in fields ranging from cell bioprocessing and regenerative medicine to cell-based assays

    Tailoring biomaterial scaffolds for osteochondral repair

    Get PDF
    Articular cartilage is a mechanically and structurally complex, lubricious tissue that permits load-bearing and frictionless movement of our joints upon articulation. Unfortunately, cartilage is unable to properly self-heal as a result of acute trauma or damage, resulting in many cases in significant pain, reduction in physical activity and quality of life for the patient. Due to the inability of resident cells to repair damaged osteochondral tissue, researchers have focused on utilizing endogenously or exogenously sourced cells (chondrocytes or tissue-derived mesenchymal stem cells), with or without scaffolds, to encourage the secretion of extracellular matrix (ECM) that replicates this highly anisotropic osteochondral tissue, in which the phenotype of the cells and the composition and orientation of the ECM varies along its depth. Important advances have been achieved towards the development of scaffolds with macroscopically relevant structures, however, articular cartilage and bone tissue contain complex, hierarchical structures that provide cells with biophysical and biochemical cues spanning multiple length scales, presenting researchers with some substantial challenges. This review summarizes the latest advances in mechanical, biochemical and topographical engineering of biomaterials to drive requisite biological responses, such as cell differentiation and matrix deposition, in an effort to achieve functional repair of osteochondral defects

    Simultaneous visualization of the flow inside and around droplets generated in microchannels

    Get PDF
    This paper reports the visualization of droplet formation in co-flowing microfluidic devices using food-grade aqueous biopolymer-surfactant solutions as the dispersed droplet phase and sunflower oil as the continuous phase. Microparticle image velocimetry and streak imaging techniques are utilized to simultaneously recover the velocity profiles both within and around the dispersed phase during droplet formation and detachment. Different breakup mechanisms are found for Newtonian-Newtonian and non-Newtonian-Newtonian model water-in-oil emulsions, emphasizing the influence of process and material parameters such as the flow rates of both phases, interfacial tension, and the elastic properties of the non-Newtonian droplet phase on the droplet formation detachment dynamics

    Transgenic human ES and iPS reporter cell lines for identification and selection of pluripotent stem cells in vitro

    Get PDF
    Optimization of pluripotent stem cell expansion and differentiation is facilitated by biological tools that permit non-invasive and dynamic monitoring of pluripotency, and the ability to select for an undifferentiated input cell population. Here we report on the generation and characterisation of clonal human embryonic stem (HES3, H9) and human induced pluripotent stem cell lines (UQEW01i-epifibC11) that have been stably modified with an artificial EOS(C3+) promoter driving expression of EGFP and puromycin resistance-conferring proteins. We show that EGFP expression faithfully reports on the pluripotency status of the cells in these lines and that antibiotic selection allows for an efficient elimination of differentiated cells from the cultures. We demonstrate that the extinction of the expression of the pluripotency reporter during differentiation closely correlates with the decrease in expression of conventional pluripotency markers, such as OCT4 (POU5F1), TRA-1-60 and SSEA4 when screening across conditions with various levels of pluripotency-maintaining or differentiation-inducing signals. We further illustrate the utility of these lines for real-time monitoring of pluripotency in embryoid bodies and microfluidic bioreactors. (C) 2014 The Authors. Published by Elsevier B. V

    Characterisation of osteogenic and vascular responses of hMSCs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform

    Get PDF
    Using microspherical scaffolds as building blocks to repair bone defects of specific size and shape has been proposed as a tissue engineering strategy. Here, phosphate glass (PG) microcarriers doped with 5 mol % TiO2 and either 0 mol % CoO (CoO 0%) or 2 mol % CoO (CoO 2%) were investigated for their ability to support osteogenic and vascular responses of human mesenchymal stem cells (hMSCs). Together with standard culture techniques, cell-material interactions were studied using a novel perfusion microfluidic bioreactor that enabled cell culture on microspheres, along with automated processing and screening of culture variables. While titanium doping was found to support hMSCs expansion and differentiation, as well as endothelial cell-derived vessel formation, additional doping with cobalt did not improve the functionality of the microspheres. Furthermore, the microfluidic bioreactor enabled screening of culture parameters for cell culture on microspheres that could be potentially translated to a scaled-up system for tissue-engineered bone manufacturing

    Spatial control of bone formation using a porous polymer scaffold co-delivering anabolic RHBMP-2 and anti-resorptive agents

    Get PDF
    Current clinical delivery of recombinant human bone morphogenetic proteins (rhBMPs) utilises freeze-dried collagen. Despite effective new bone generation, rhBMP via collagen can be limited by significant complications due to inflammation and uncontrolled bone formation. This study aimed to produce an alternative rhBMP local delivery system to permit more controllable and superior rhBMP-induced bone formation. Cylindrical porous poly(lactic-co-glycolic acid) (PLGA) scaffolds were manufactured by thermally-induced phase separation. Scaffolds were encapsulated with anabolic rhBMP-2 (20 μg) ± anti-resorptive agents: zoledronic acid (5 μg ZA), ZA pre-adsorbed onto hydroxyapatite microparticles, (5 μg ZA/2 % HA) or IkappaB kinase (IKK) inhibitor (10 μg PS-1145). Scaffolds were inserted in a 6-mm critical-sized femoral defect in Wistar rats, and compared against rhBMP-2 via collagen. The regenerate region was examined at 6 weeks by 3D microCT and descriptive histology. MicroCT and histology revealed rhBMP-induced bone was more restricted in the PLGA scaffolds than collagen scaffolds (-92.3 % TV, p < 0.01). The regenerate formed by PLGA + rhBMP-2/ZA/HA showed comparable bone volume to rhBMP-2 via collagen, and bone mineral density was +9.1 % higher (p < 0.01). Local adjunct ZA/HA or PS-1145 significantly enhanced PLGA + rhBMP-induced bone formation by +78.2 % and +52.0 %, respectively (p ≤ 0.01). Mechanistically, MG-63 human osteoblast-like cells showed cellular invasion and proliferation within PLGA scaffolds. In conclusion, PLGA scaffolds enabled superior spatial control of rhBMP-induced bone formation over clinically-used collagen. The PLGA scaffold has the potential to avoid uncontrollable bone formation-related safety issues and to customise bone shape by scaffold design. Moreover, local treatment with anti-resorptive agents incorporated within the scaffold further augmented rhBMP-induced bone formation

    Analysis of the extreme diversity of salivary alpha-amylase isoforms generated by physiological proteolysis using liquid chromatography-tandem mass spectrometry

    Get PDF
    Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva

    The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-fabricated Geometries

    Get PDF
    The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through microfabricated planar abrupt contraction-expansions is investigated. The contraction geometries are fabricated from a high-resolution chrome mask and cross-linked PDMS gels using the tools of soft-lithography. The small length scales and high deformation rates in the contraction throat lead to significant extensional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. The dimensionless extra pressure drop across the contraction increases by more than 200% and is accompanied by significant upstream vortex growth. Streak photography and videomicroscopy using epifluorescent particles shows that the flow ultimately becomes unstable and three-dimensional. The moderate Reynolds numbers (0.03 ⤠Re ⤠44) associated with these high Deborah number (0 ⤠De ⤠600) microfluidic flows results in the exploration of new regions of the Re-De parameter space in which the effects of both elasticity and inertia can be observed. Understanding such interactions will be increasingly important in microfluidic applications involving complex fluids and can best be interpreted in terms of the elasticity number, El = De/Re, which is independent of the flow kinematics and depends only on the fluid rheology and the characteristic size of the device.NS
    • …
    corecore