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ACCEPTED MANUSCRIPTAbstract: 

Optimization of pluripotent stem cell expansion and differentiation is facilitated by biological tools 

that permit non-invasive and dynamic monitoring of pluripotency, and the ability to select for an 

undifferentiated input cell population.  Here we report on the generation and characterization of clonal 

human embryonic stem (HES3, H9) and human induced pluripotent stem cell lines (UQEW01i-

epifibC11) that have been stably modified with an artificial EOS(C3+) promoter driving expression of 

EGFP and puromycin resistance-conferring proteins. We show that EGFP expression faithfully 

reports on the pluripotency status of the cells in these lines, and that antibiotic selection allows for an 

efficient elimination of differentiated cells from the cultures. We demonstrate that the extinction of 

the expression of the pluripotency reporter during differentiation closely correlates with the decrease 

in expression of conventional pluripotency markers, such as OCT4 (POU5F1), TRA-1-60 and SSEA4 

when screening across conditions with various levels of pluripotency-maintaining or differentiation-

inducing signals. We further illustrate the utility of these lines for real-time monitoring of 

pluripotency in embryoid bodies and microfluidic bioreactors. 
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ACCEPTED MANUSCRIPT1. Introduction: 

Human embryonic stem (ES) and induced pluripotent stem (iPS) cells are expected to revolutionize 

regenerative medicine and are potentially powerful tools for therapeutic drug screening (Inoue, H. and 

Yamanaka, S., 2011; Rowntree, R.K. and McNeish, J.D., 2010). Despite recent rapid advances in our 

ability to expand these cells as pluripotent cells (Ungrin, M.D. et al., 2008) and direct their 

differentiation into a range of desired cell lineages (Keller, G., 2005), much is to be learned about the 

extrinsic and endogenous factors produced that control these processes, and how these are modulated 

by cell-cell contact signalling and other features of the microenvironment. The ability to genetically 

manipulate mouse ES cells and the generation of mouse models with constitutive or inducible tissue-

specific, cell-specific or gene-specific fluorescent reporters has greatly accelerated our understanding 

of pluripotent stem cell biology. However, in the case of human pluripotent cells the development of 

such tools has been much slower, mainly because of the inefficient nature of homologous 

recombination in human pluripotent cells, the difficulty in obtaining clonal populations of cells, and 

their inherent genetic and epigenetic instability in culture. The derivation of transgenic, clonal, and 

karyotypically normal human pluripotent stem cell lines is therefore a non-trivial endeavour. 

Furthermore, there is the obvious inability to perform human blastocyst injection of genetically-

tagged ES cells, an assay that is widely used in mice to exemplify the efficacy of ES and iPS cell 

reporters. Given the intrinsic differences between mouse and human ES cells in terms of molecular 

pathways maintaining pluripotency and inducing lineage-specific differentiation, and the need to 

isolate pure populations of lineage-specific progenitors (or the identification of specific cell surface 

markers thereof), a number of laboratories have undertaken the arduous task of genetically tagging 

promoters and genes of interest using either classical homologous recombination or zinc 

finger/TALEN-based genome editing techniques (Liu, Y. et al., 2011; Zou, J. et al., 2009; Zwaka, 

T.P. and Thomson, J.A., 2003). It is, however, becoming increasingly clear that human embryonic 

stem cell lines differ intrinsically in their ability to grow and respond to pluripotent cell culture 

conditions and also possess different biases in their propensity to undergo differentiation into specific 

cell types (Lepski, G., 2012). This is most evident when comparing human iPS cell lines derived from 

different cell types or generated through different methods (Alvarez, C.V. et al., 2012). Understanding 

and harnessing these different propensities of human pluripotent cell lines, properties most likely 

influenced by both genetic background and epigenetic parameters, is one of the major current 

challenges in the stem cell field (Tobin, S.C. and Kim, K., 2012).  

With the recent advent of iPS cells and their wide potential in the field of regenerative medicine, the 

propensity of differentiated, iPS-derived cells to revert back to a pluripotent phenotype is particularly 

topical (Pera, M.F., 2011). Hence, the ability to identify, and ultimately eliminate, the cells that retain 

these undesired pluripotent properties after directed differentiation will be essential for regenerative 

medicine. One of the most viable and attractive approaches to this end is the genetic tagging of cells 

which, in turn, requires the identification of the best promoters capable of reporting on such cells. 

There is thus a clear need for tools that allow for the rapid and facile delivery of gene reporters to 

human pluripotent stem cells that faithfully report on pluripotency and differentiation. Lentiviral 

delivery of fluorescent promoter reporters is clearly an attractive solution, and a family of selectable 
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ACCEPTED MANUSCRIPTfluorescent reporter lentiviruses has been described by Hotta et al. (Hotta, A. et al., 2009a; Hotta, A. 

et al., 2009b). Various promoters have been trialled for their ability to drive expression specifically in 

pluripotent cells, and the artificial OCT4/POU5F1 promoter sequences-based promoter driving 

expression of both EGFP and puromycin N-acetyltransferase (conferring puromycin resistance), used 

in this study, appears to provide the highest efficiency and specificity in human pluripotent ES (hES 

and iPS) cells (Hotta, A. et al., 2009a). Here we report on the generation and verification of the 

pluripotent stem cell lines with the lentivirally-delivered EOS(C3+)-EGFP-IRES-PURO transgene 

that both reports on pluripotency and, of key importance, allows for the selection of pluripotent stem 

cells.  
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ACCEPTED MANUSCRIPT2. Materials and Methods 

2.1 Pluripotent and differentiated cell culture conditions and cell lines 

hES and iPS cells were cultured in feeder-free conditions in xeno-free defined medium, mTeSR
TM

1 

(StemCell Technologies, Vancouver, BC) or NutriStem (Stemgent) on Matrigel™ (BD Biosciences at 

1/100 dilution) coated tissue culture plastic surfaces. NutriStem medium was supplemented with 10 

ng/mL FGF2 (Invitrogen/Life Technologies) for hES and 50 ng/mL for iPS cell line propagation. 

Cells were passaged as clumps using dispase (Gibco/Life Technologies) digestion at 1.5 mg/mL. For 

a typical 2D differentiation protocol, cells were grown in a 6-well plate to ~50% confluence in the 

presence of 2 µg/mL of puromycin, and the medium changed to selection-free KSR medium (Chung, 

T.L. et al., 2010), with or without inducers of differentiation, either 10% FCS or 5 µM retinoic acid 

(RA). Cells were harvested at 2-6 days after induction of differentiation. HES3 and H9 hES cell lines 

were provided by the UQ AIBN StemCore (www.stemcore.com.au). The UQEW01i-epifibC11 iPS 

episomally-derived cell line (referred to as WT11TF for brevity from now on) was described 

previously (Briggs, J.A. et al., 2012; Nayler, S. et al., 2012). At least three independent clones from 

hES and iPS parental cell lines with representative characteristics (levels of reporter expression in 

pluripotent state, reporter inactivation dynamics) were used for analysis.  

2.2 Lentiviral transduction of the pluripotent stem cells 

Lentiviral and packaging vectors, pCMVR8.2 and pVSV-G, were co-transfected into the 293FT cell 

line (Invitrogen) for viral particle production as described in (Whitworth, D.J. et al., 2012). HES3 and 

H9 hES cells adapted to passaging as a single-cell suspension, as described previously (Hudson, J. et 

al., 2012), as well as the hESC and UQEW01i-epifibC11 lines maintained as bulk cultures on 

Matrigel™ substrate(BD Biosciences), were transduced with lentiviral particles and maintained in 

mTeSR
TM

1/Matrigel cultures under selection in the presence of 2.5 µg/mL of puromycin. Putative 

single cell-derived colonies homogeneous for moderate to high EGFP expression were generated from 

HES3 and H9 cell lines and transgene-free iPS clone WT11TF (UQEW01i-epifibC11). The following 

plasmids were obtained from Addgene (MA, U.S.A.) and used for lentivirus production: Addgene 

plasmid 21312  PL-SIN-PGK-EiP, 21313  PL-SIN-EOS-C(3+)-EiP (used to produce the described 

EOS(C3+)-EiP reporter lines), 21314  PL-SIN-EOS-S(4+)-EiP. 

2.3 Analysis of the reporter and pluripotency marker expression 

2.3.1 Flow cytometry: Analysis of cell surface markers was carried out essentially as described in 

(Ovchinnikov, D.A. et al., 2012; Whitworth, D.J. et al., 2012). Briefly, cells were brought to a single 

cell suspension using TrypLE or Cell Dissociation Buffer (Invitrogen) and stained live with anti-

TRA-1-60 1/300 (MAB4360,  Millipore), anti-SSEA4 1/400 (MAB4304, Millipore), anti-TG30 1/400 

(MAB4427, Millipore), or with anti-OCT4 (MAB4419,Millipore) after 10 min fixation in 2% 

neutralized PFA and permeabilization with TritonX-100. For blocking, antibody incubation and 

permeabilization (when applicable) steps, PBS containing 10% heat-inactivated goat serum (Hyclone) 

and 0.1% TritonX-100 (0.4% for permeabilization) was used. For flow cytometry secondary 

antibodies anti-mouse IgG (H+L) AlexaFluor488 or anti-mouse IgM AlexaFluor488 (Molecular 

Probes/Invitrogen, Carlsbad, USA) were used at a 1/1000 dilution. Isotype control antibodies at 
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ACCEPTED MANUSCRIPTidentical concentrations as the primary antibodies were used to set the gates. Flow cytometry data 

were collected using BD LSRII or AccuriCFlow C6 cytometers, and analysed using AccuriCFlow. 

2.3.2 Immunofluorescence:  The primary antibodies used for immunofluorescence were: anti-Oct3/4 

(C10, sc5279 SantaCruz) at 1/75, anti-Sox2 (AB5603, Millipore) at 1/100, anti-NANOG (9220 

Millipore) at 1/150. Secondary antibody: anti-mouse IgG (H+L) AlexaFluor488 (Molecular 

Probes/Invitrogen) was used at a 1/1000 dilution. Isotype controls at similar dilutions to the primary 

antibodies were used to assess non-specific binding. No significant labelling was detected in isotype 

control-incubated samples (data not shown). Counter-staining of the nuclei was performed using 

Hoechst 33342 nuclear dye (Invitrogen/Life Technologies) at 0.1 µg/mL in PBS.  

2.4 Statistical analysis of the reporter and surface marker correlation 

To correlate the extinction of pluripotency reporter-driven EGFP fluorescence with the surface 

pluripotency markers, flow cytometric analysis was performed on cells from 2D differentiation 

cultures at their intermediate stages: i.e. when the majority of the cells possessed an intermediate level 

of surface marker expression and differentiation phenotype. Fluorescence readings corresponding to 

single-cell events (gated on forward and side scatter plots and peak width) were exported in text 

(*.csv) format using Weasel v2.7 software (WEHI, Melbourne, Australia). Spearman’s rank test 

analysis was performed as described in (McDonald, J.H., 2009). For calculations n>1000 was used, 

thus providing high confidence in the significance of the correlation (p<0.01).  

2.5 Reporter cell line evaluation in multifactorial microbioreactor array-based assays 

Data from full-factorial microbioreactor array screening experiments using a previously described 

system (Hudson, J. et al., 2012) were used to compare EOS-GFP expression with TG30 and TRA-1-

60 expression levels. Briefly, microbioreactors were fabricated and sterilised, surface-coated with 400 

μg/mL purified human fibronectin (BD Biosciences), and seeded with HES3::EOS(C3+)-EiP hESCs 

at ~4×10
4
 cells/cm

2
 in mTeSR

TM
1 without FGF2 and TGF1 (StemCell Technologies) with inclusion 

of 10 μM ROCK inhibitor (Sigma-Aldrich). Cells were allowed to attach for 8-10 h then cultured for 

6.5 d under 60 μL/h continuous fluid flow, under the panel of conditions shown in Figure 3E. At the 

endpoint, arrays were stained for TRA-1-60 and with Hoechst33342, and then imaged with a Zeiss 

LSM 710 laser scanning confocal microscope, with optical sections processed into a maximum 

intensity projection for image analysis. Total fluorescence intensities (TEOS-GFP, for example) were 

extracted from array images with AGScan (https://mulcyber.toulouse.inra.fr/projects/agscan), and 

individual spot intensities in each channel were linearly transformed about the mean and standard 

deviation for all spots in that channel in an individual array, by IEOS-GFP = (TEOS-GFP - μEOS-GFP)/σEOS-GFP, 

where IEOS-GFP is termed the expression index of EOS-GFP, and μEOS-GFP is the mean and σEOS-GFP the 

standard deviation of all spot intensities (TEOS-GFP)for a particular array. 

2.6 Assessment of the differentiation potential of the pluripotency reporter cell lines 

The differentiation potential of EOS(C3+)-EiP cell lines was assessed using both in vitro embryoid 

body formation and in vivo teratoma formation assays. For embryoid body formation, cells were 

digested using dispase with subsequent resuspension in KSR medium (20% KnockOut
TM

 Serum 
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ACCEPTED MANUSCRIPTReplacement in DMEM/F12 medium, (both from LifeTechnologies), full description in (Chung, T.L. 

et al., 2010), in a well of a 6-well ultra-low attachment polystyrene plate (Falcon). For the teratoma 

formation assay, a pellet of 5x10
5 
cells was formed in the presence of Matrigel matrix at 1:50 dilution, 

and injected intramuscularly into the thigh muscle of a NOD/SCID mouse. Teratomas were harvested 

within 4-8 weeks, fixed and processed for paraffin embedding and histological analysis. 

Haematoxylin/eosin-stained 5 μm sections were permanently mounted, microscopically analysed and 

imaged on an Olympus IX51 inverted microscope equipped with MicroPublisher 3.3 RTV CCD 

camera (QImaging). For directed differentiation, we utilized previously described protocols for 

neuronal (Briggs, J.A. et al., 2012) differentiation from the hPSCs. 

2.7 Analysis of the pluripotency and lineage-specific marker expression in embryoid bodies derived 

from EOS(C3+)-EiP human pluripotent cell lines 

Downregulation of the expression of the conventional markers of pluripotency (POU5F1 and SOX2) 

and selected markers of differentiation into the three major germ layers and their derivatives (PAX6, 

EOMESODERMIN and CDX2) were assayed using a qPCR-based approach. Briefly, total RNA was 

isolated using the Nucleospin RNA II kit (Macherey-Nagel) according to the manufacturer’s protocol. 

1 μg of isolated total RNA was utilized to synthesize cDNA using the iScript cDNA synthesis kit 

(Bio-Rad) according to the manufacturer’s protocol. qPCR reactions comprised of Ssofast Evagreen 

(Bio-Rad) reaction mix and cDNA template were performed using the C1000 Thermal Cycler (Bio-

Rad). All measured genes had their corresponding quantitative levels normalized to endogenous 

GAPDH. Primer sequences can be found in Table 1. 
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3.1 Generation and characterisation of EOS reporter lines 

Human embryonic stem cell lines HES3 and H9 and the non-viral, integration-free human iPS cell 

line WT11TF (UQEW01i-epifibC11 (Briggs, J.A. et al., 2012)) were cultured under feeder-free 

conditions in mTeSR
TM

1 or MEF-conditioned medium, and transduced with high titre lentiviral 

preparations produced using the EOS(C3+)-EGFP-IRES-PURO (from this time referred to as 

EOS(C3+)-EiP) constructs (Hotta, A. et al., 2009a). By day 5, up to 5 % of hES/iPS cells were found 

to express GFP. Such cultures were next allowed to expand for 3 more days before selection for stable 

integration of the transgene through the addition of initially 2 µg/ml puromycin, with a further 

increase to 2.5 µg/ml puromycin after day 6. After 12-16 days, we observed an almost homogeneous 

expression of EGFP in some colonies of surviving hESC and iPSC (Supplementary figure 1F). These 

colonies were next harvested, expanded and cryopreserved. During continued passaging of 

EOS(C3+)-EIP hES and iPS cells we observed the well-known sporadic inactivation of lentiviral 

transgenes previously observed in hPSCs (Liew, C.G. et al., 2007; Xia, X. et al., 2007), as indicated 

by the “salt-and-pepper” pattern of EGFP–expressing cells interspersed with those that have lost the 

expression (best illustrated in Supplementary Figure 1C), most likely due to epigenetically-driven 

lentiviral transgene inactivation. However, the addition of puromycin to such cultures allowed facile 

deletion of the vast majority of such cells (Supplementary Figure 1C, L, also discussed further in 

section 3.3). Clones displaying highly-homogeneous and penetrant expression of the reporter 

transgene were picked for further characterisation (Figure 1B, F, H and Supplementary Figure 1G-I). 

EOS(C3+)-EIP lentivirally-transduced hESC and iPSC were expanded for more than 20 weekly 

passages and exhibited normal karyotypes (Supplementary figure 1) and expressed high levels of the 

pluripotency-controlling transcription factors POU5F1/OCT4, SOX2 and NANOG (Figure 2A) by 

immunofluorescence and Oct4 and SOX2 by FACS (Table 2). When under constant selection, the 

fraction of EGFP-expressing resistant cells in single cell-derived clones was found to be consistently 

high in all hPSCs, specifically 90.14 ± 3.2% (5 clones) for HES3 hESC and 93.5 ± 2.7% (5 clones) 

for WT11TF iPSC (also see Table 1). The pluripotency of stable EOS lines was confirmed by RT-

PCR analysis of embryoid bodies (EBs), which demonstrated expression of markers of all three germ 

layers and their derivatives (Supplementary figure 2). Furthermore, both hESC and iPSC EOS lines 

formed teratomas in NOD-SCID mice that exhibited cell types representative of the three germ layers 

(Figure 2 E-G for hESC- and Supplementary figure 2 for iPSC-derived EOS clones). In situ analysis 

of GFP expression in cultured hESC and iPSC lines indicated an excellent correlation between the 

loss of EGFP fluorescence and morphological signs of differentiation (Fig 1 I-J), such as those 

typically occurring at the centres of hES and iPS colonies.   

3.2 Enrichment for pluripotent cells improves directed differentiation protocols 

Because differentiated cells excrete paracrine factors and impose confounding cell-cell interactions on 

human pluripotent stem cells, homogeneous and efficient differentiation protocols generally require 

(or at least greatly benefit from) a pure pluripotent starting population, e.g. (Hudson, J. et al., 2012). 

The presence of the EOS promoter-driven puromycin antibiotic selection marker allows for a rapid 

deletion of any differentiated cells from such cultures (e.g. Fig 1K where the EGFP-IRES-puro 
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EOS(C3+) promoter). Nearly-complete ablation could be achieved in as little as 2-3 days due to the 

potent nature of the puromycin selection, causing rapid death and detachment of non-resistant cells 

(Supplementary Figure 1L and data not shown). 

To exemplify the benefits of this selection, we cultured three WT11TF::EOS(C3+)-EiP clones for 3 

weeks in parallel in conditioned medium containing 50 ng/mL bFGF with and without puromycin 

selection. Subsequent flow-cytometric analysis showed that the antibiotic-selected population 

contained 1.7 ± 0.5% of POU5F1/OCT4
-
 cells (N=3) while the similarly cultured non-selected 

populations contained 9.3 ± 2.3% (N=3) POU5F1/OCT4
-
 cells (Figure 2H). We next assessed whether 

this difference in starting population affects the efficiency of neuronal differentiation (See Methods 

section). Indeed, after 6 days of directed neuronal differentiation, puromycin-selected cultures 

displayed 31 ± 4.2% PAX6+ neuroepithelial progenitors, as measured by flow cytometry with anti-

PAX6 antibody, whereas unselected cultures show 20 ± 5.1% PAX6+ cells (N=3, Figure 2H and 

Supplementary Figure 2D).  

3.3 Validation of the functionality of the pluripotency reporter lines 

In time-lapse videos of differentiating colonies of the reporter clones a very good concordance 

between the EGFP extinction and morphological changes associated with differentiation is apparent 

(Supplementary videos 1-3), with central areas of colonies inactivating the reporter and acquiring a 

differentiated morphology first. Complete extinction of reporter fluorescence was observed after 6 

days of withdrawal of the pluripotency-maintaining factors, addition of foetal calf serum (FCS) or 

supplementation with retinoic acid at 5 µM (Figure 3A). 

Since the conventional variant of the EGFP protein was used in the construction of the transgene it 

was important to verify the dynamic response range and kinetics of EGFP downregulation during 

differentiation of the reporter lines in comparison with the expression of other widely-used 

pluripotency markers. To this end we allowed reporter-containing hESC and iPSC to undergo 

spontaneous differentiation, through the withdrawal of FGF and TGF from the culture medium, or 

induced differentiation through addition of retinoic acid to the medium, and assessed EGFP and 

pluripotency marker expression at days 0, 2, 4 and 6. Downregulation of EGFP occurred more rapidly 

and more completely than downregulation of the widely-used pluripotency markers TRA-1-60, TG30 

and SSEA4 (Figure 3C, D, Supplementary Figure 3B, C), and correlated very closely with the 

downregulation of OCT4 expression (Figure 3C, Supplementary Figure 3C) for both hESC-(Figure 3) 

and iPS-derived (Supplementary Figure 3) reporter clones. Downregulation of the reporter followed 

the decrease in levels of OCT4 protein with a ~24 hours lag period resulting in a population of cells 

with reduced OCT4 expression but still retaining detectable levels of EGFP reporter protein 

expression (Figure 3C). This observation is consistent with the stability of the EGFP mRNA (Cubitt, 

A.B. et al., 1995), the half-life of EGFP protein of around 26 hours in mammalian cells (Corish, P. 

and Tyler-Smith, C., 1999) and the fact that OCT4 is itself is a direct regulator of the reporter 

promoter.  
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pluripotency cell surface markers such as TRA-1-60 and SSEA-4 (representative raw data plots 

shown for TRA1-60 in Figure 3B, and for SSEA4 in Supplementary Figure 3A). The Spearman’s 

rank-based test is most suitable for assessment of general trends of this type, as it is not based on any 

assumption of the nature of the sample’s distribution. The correlation appeared to be very good with 

Spearman’s rho values ≥0.7 for EGFP and surface markers, >0.8 for TRA-1-60 (rs=0.81 ± 0.9%, n=3) 

and rs >0.7 for SSEA4  (Supplementary Figure 3A and data not shown).  

Collectively these data demonstrate that EGFP expression in lentivirally-generated hESC and hiPSC 

EOS(C3+)-EiP pluripotency reporter lines faithfully and dynamically reports on pluripotency and that 

such lines behave as normal human pluripotent cell lines. 

3.4 Pluripotency screening in a multifactorial microbioreactor array 

The pluripotency reporter cell line HES3:EOS-C(3+)-EiP was seeded into the microbioreactor array 

(Titmarsh, D.M. et al., 2013) and subjected to factorial combinations of the pluripotency maintenance 

factors FGF2 and TGFβ1 and the differentiation-inducing factor retinoic acid (RA) using the 

concentrations listed in the panel in Figure 3E. After continuous slow perfusion culture for 6.5 days 

under these conditions, cells had proliferated and showed morphological differences between various 

treatments, and expressed GFP under the control of the EOS(C3+)-EIP promoter construct. GFP 

expression in the HES3::EOS-C(3+)-EiP reporter line exhibited a high dynamic range (bright 

expression and efficient extinction) and sensitive response. The presence of 5 or 10 μM RA reduced 

EOS(C3+)-EIP expression to a baseline level regardless of FGF2 or TGFβ1 treatment. Also, 

treatments lacking maintenance factors (FGF2 and TGFβ1, Column 1) or with insufficient factors 

(0.25 ng/mL TGFβ1, Column 4) had similar EOS(C3+)-EIP expression to RA-treated conditions, 

showing sensitivity to absent or insufficient pro-maintenance signals. Supply of sufficient 

maintenance factors (column 25, for example) maintained high-level expression. The highest response 

for all 3 pluripotency markers occurred at Column 25 (100 ng/mL FGF2, 0.5 ng/mL TGFβ1), which 

corresponds to reconstituted composition of original mTeSR
TM

1 maintenance medium. 

TRA-1-60 exhibited a lower dynamic range than EOS(C3+)-EIP, and had higher residual expression, 

resulting in “false-positive” readouts in pluripotency non-maintaining environments in some 

differentiating conditions in the array (Figure 3D and figure legend, and Figures 3C and 

Supplementary Figure 2). As a result of this, levels of TRA-1-60 expression, both when normalized 

across the microbioreactor (Figure 3E) or against the chamber’s DNA contents (data not shown), 

varied more widely than EOS(C3+)-EIP and thus were less sensitive as an indicator of differentiation, 

while the reporter expression appeared to correlate well with the conditions favouring maintenance of 

pluripotency, and showed  robust down-regulation in all RA-containing environments (Figure 3E).  

3.5 Persistence of the EOS(C3+)-EIP reporter uncovers heterogeneity amongst embryoid bodies in 

differentiation assays 

To investigate extinction dynamics of the pluripotency reporter in a 3D setting, we next subjected 

hESC and iPSC reporter lines to embryoid body (EB) differentiation protocols. Conventional analysis 

of lineage-specific marker expression on pooled EBs after 8 weeks shows the expected overall 
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ACCEPTED MANUSCRIPTdecrease in expression of both OCT4/POU5F1and SOX2, and up-regulation of the neuronal (PAX6, 

TUBB3), posterior endoderm (CDX2) and mesoderm (EOMESODERMIN) lineage markers that is 

routinely reported in the literature (Supplementary figure 2). However, in situ examination of EGFP 

expression in EOS(C3+)-hESC and iPSC reporter clone derived suspension EBs revealed an 

unexpected persistence and remarkable inter-EB diversity (Figure 4 A-F). While there was a marked 

and expected overall downregulation of reporter expression after 2 weeks in culture when compared 

to freshly generated EBs (Figure 4C), a large proportion of the EBs retained low levels of EGFP 

expression (Figure 4C,C’). After 6 weeks of suspension culture in KSR medium without pluripotency-

maintaining factors a number of EBs (~70%, increasing with time in culture) lost all, or most, of the 

EOS(C3+)-EIP reporter-driven EGFP fluorescence (Figure 4F). These EBs were typically smaller, 

and started to form cavities or cyst-like structures (Supplementary Figure 4B,C). Pooling of the 6 

week-old EGFP-low and EGFP-negative EBs followed by a qPCR analysis revealed that EBs 

retaining reporter fluorescence maintained higher levels of residual OCT4/POU5F1 (tested using 2 

distinct qPCR primer sets), its downstream target LEFTYA, and higher levels of the mesodermal 

marker EOMESODERMIN (Supplementary Figure 4A).  On the other hand, low EGFP-expressing 

EBs showed similar expression levels of SOX2 (a direct regulator of the EOS promoter, also tested 

using 2 distinct qPCR assays, one of which is shown in Supplementary Figure 4A), DNMT3A (a 

pluripotency-associated DNA methyl-transferase), PAX6 (a neuroectodermal marker) and  TUBB3 (a 

neuronal marker) (Supplementary Figure 4A). By week 12 virtually no EGFP expression was detected 

in any of the EBs (Figure 4F, Supplementary Figure 4C,D), indicating that this persistence of EGFP 

expression in a subset of 6 week-old EBs that appears to undergo mesodermal differentiation is not 

due to an intrinsic inability to down-regulate the reporter.  Identification of this unexpected 

heterogeneity within EB pools would not have been possible without the use of the pluripotency 

reporter and is one example of its utility. 
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The ability for live monitoring of the pluripotency status of stem cells is important for both 

optimisation of growth and differentiation conditions, and assessment of the retention and extinction 

of pluripotency by stem cell lines, in particular iPSCs, during differentiation. The EOS promoter 

tested is available in 2 variants, with tandemly concatenated OCT4/SOX2 binding sites derived from 

either the OCT4/POU5F1 promoter (C3, 3 copies) or SOX2 promoter (S4 variant, 4 copies) (Hotta, A. 

et al., 2009a; Hotta, A. et al., 2009b). Clonally-derived hES lines were originally generated using both 

variants, but preliminary analysis showed that the former (C3+) variant  tended to produce lines with 

more consistent reporter expression and responsiveness across a wider range of basal fluorescence 

levels, and produced a larger fraction of puromycin-resistant clones that were EGFP
+
 (78%  vs. 62%, 

n=50 for HES3).  

It is likely that a pluripotency reporter construct could be a useful tool to drive “suicide gene”-based 

cassettes and delete unwanted stem cells that either retain or re-acquire pluripotency in iPSC-derived 

grafts. In this study we show that the reporter is rapidly extinguished during various directed and 

spontaneous differentiation protocols, with more efficient extinction in neurally-biased embryoid 

body differentiation, but can maintain residual expression for extended periods in cells that 

differentiate into embryoid bodies biased towards the mesodermal lineage. Reporter expression is 

eventually lost in the majority of cellular aggregates (EBs) after 6 weeks and from all cells after 12 

weeks of EB-based differentiation, identifying the time window when such deletion strategies should 

commence in vivo. One could further envisage that the lentiviral delivery of the reporter to newly 

generated iPS cell lines could be used as a tool to screen such lines for their propensity to re-acquire 

pluripotency following differentiation, e.g. as EBs, and study the molecular basis of this unwanted 

property. 

In the shorter term the greatest utility of these lines lies in their ability to report on 

pluripotency in real time. We exemplify that human pluripotent stem cell lines that stably express the 

reporter allow monitoring of the pluripotency states of individual cells in a wide spectrum of 

experimental settings (e.g. Titmarsh, D.M. et al., 2013). These lines are particularly valuable for 

microbioreactor arrays, bioengineering applications, and other applications requiring non-intrusive 

and continuous monitoring regimes such as screening of culture surfaces. 

 The reporter lines allowed us to observe in real time that colonies with greater than 300 cells 

displayed slightly higher expression levels of the reporter at the colonies’ outermost few cell layers 

(Figure 1A, F, fluorescence profiles across colonies shown in Supplementary figure 2M). This is in 

agreement with previous observations of higher levels of TGF/activin signalling and higher 

expression of pluripotency markers on the edges of the human pluripotent stem cell colonies (Hough, 

S.R. et al., 2009). 

 The ability to efficiently select for cells of a consistently highly-pluripotent phenotype in cultures, 

including those on a large scale, is crucial for providing homogeneously-pluripotent starting material 

for directed differentiation protocols, for instance in the generation of cardiomyocytes and certain 

neuronal cell types. 
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differentiated, OCT4-negative cells (Figure 2H). It appears that these spontaneously-differentiated 

cells have a cell non-autonomous effect on the directed neuroepithelial conversion of the whole 

population, resulting in a 33% drop in the numbers of neuroectodermally-converted cells as measured 

by the expression of PAX6 protein (Figure 2H and Supplementary Figure 2D).  

The difference in correlation between EGFP and TRA160 as compared to that between EGFP and 

SSEA4 or TG30 is consistent with the observations that extinction dynamics of TRA-1-60 with 

differentiation are substantially faster than that of TG30 or SSEA4 (Figure 3D and supplementary 

figure 2). The dynamic response range and sensitivity of the EOS(C3+)-EGFP-IRES-Puro reporter is 

in fact superior to TRA-1-60, as can be judged from the more rapid and pronounced downregulation 

of EGFP than TRA-1-60 following RA-induced differentiation (Figure 3D and Supplementary Figure 

2C). Similarly, when titrating concentration combinations of FGF2 and TGF1, the expression of 

reporter EGFP corresponded much more dynamically to variations in these pluripotency-maintaining 

factors than TRA-1-60 (Figure 3E).  

In conclusion we have generated and characterized multiple hES and iPS cell lines that should prove a 

useful tool for exploration of the maintenance of pluripotency, pluripotency extinction and re-

emergence in real time, enabling simple and scalable selection of hPSC populations that are near 

homogeneously pluripotent, and undergo more homogeneous and efficient directed differentiation . 
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Figure 1.Cellular distribution of reporter fluorescence in the EOS promoter-based reporter 

lines grown in feeder-free conditions. A,B - Corresponding phase-contrast and EGFP 

epifluorescence images of a HES3 hES cell line-based EOS(C3+)-EiP colony grown under puromycin 

selection. C,D - Flow cytometry histograms illustrating consistently high levels of EOS(C3+)-EiP 

expression in 3 puromycin-selected HES3 EOS(C3+) clones. Parental cell line HES3 (orig), was used 

as a control. E,F Phase contrast and epifluorescence images of a typical H9 hES EOS(C3)-EiP 

colony. G,H - Images of the transgene-free iPS line UQEW01i-epifibC11-based EOS(C3+)-EiP cell 

line colony. (A,B and E-H are all passage 2 after transduction and continuous puromycin selection)  

I,J - phase-contrast and epifluorescence images of the iPS (UQEW01i-epifibC11) EOS(C3+)-EiP cell 

lines’ colonies following partial spontaneous differentiation in their central portions. Prominent drop 

in the reporter fluorescence correlates with morphological signs of differentiation. K,L- phase-

contrast images of the edges of HES3::PGK-EiP (K) and HES3::EOS(C3+)-EiP (L) colonies, 

respectively, grown in presence of 2µg/mL of  puromycin, illustrating efficient elimination of 

fibroblast-like differentiated cells from the colony’s edges in EOS(C3+)- but not in the ubiquitous 

PGK promoter-driven EGFP and puromycin HES3 line. Scale bars = 20µm. 
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Figure 2. Validating pluripotency and differentiation potential of the EOS(C3+)-EIP 

pluripotency reporter in hESC and iPSC lines, and their utility in improving directed 

differentiation. A. An immunofluorescent staining for OCT4/POU5F1 and SOX2 in representative 

HES3::EOS(C3+)-EiP colonies grown under puromycin selection. Scale bar=20µm. B-D. Flow-

cytometric analysis of EGFP reporter and surface marker expression (SSEA4 and TRA-1-60) in a 

HES3 EOS(C3+)-EiP hES cell line grown for 1 day without selection. E-G. Histological teratoma 

sections derived from HES3::EOS(C3+)-EiP cell line, demonstrating fully-differentiated tissues 

derived from the three germ layers: mesoderm (E, cartilage), ectoderm (F, retinal pigmented 

neuroepithelium-like) and endoderm (G, secretory epithelium and goblet-like cells lining a mucus-

filled cavity, *). Hematoxylin/eosin staining on 5 µm-thick paraffin sections, scale bar 100 µm. H, 

Flow cytometric analysis of the difference in loss of pluripotency marker POU5F1/OCT4, and  

subsequent acquisition of expression of the neuroepithelial marker PAX6 in iPS-derived reporter 

clone grown with (green) and without (blue) selection. 
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Figure 3. Utility of the EOS(C3+)-EiP reporter lines for assessment of the pluripotency status. A. 
Histogram of the distribution of reporter fluorescence levels illustrating effects of various 

differentiation-inducing conditions on the expression of the reporter in HES3::EOS(C3+). B. Plot 

illustrating the correlation between EGFP fluorescence and TRA1-60 expression in HES3::EOS(C3+)-

EiP after 3 days of FCS-induced differentiation as measured by flow cytometry. Only 300 events (for 

visual clarity) were plotted on a double decimal logarithm scale plot.  Spearman’s rho coefficient for 

this plot rs= 0.82. C. Contour-plots of the flow-cytometric measurements illustrating kinetics of the 

decrease in OCT4 and EGFP expression in differentiating HES3::EOS(C3+)-EiP. D. Histograms 

illustrating dynamics of OCT4,EGFP, TRA1-60 and TG30 extinction in a HES3::EOS(C3+)-EiP clone 

during the time course of differentiation in the KSR medium E. Expression indices (see Methods, and 

(Titmarsh, D.M. et al., 2013) for definition) of EOS(C3+)-EIP reporter and TRA-1-60 in 

microbioreactor during factorial analysis of the effects of FGF2, TGFβ1 and RA concentration on 

maintenance of pluripotency in a HES3 reporter cell line. Reporter and surface marker fluorescence 

reading for each of the wells was normalized against DNA content. Fluorescence indices are plotted as 

mean ± SD. 
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differentiating embryoid bodies (EBs). A. Fluorescent image of representative EBs 2 days after 

formation. B. EBs 1 weeks after formation retain high levels of EOS(C3+)-EiP reporter fluorescence. 

C, C’. Fluorescent and bright-field images of EBs 2 weeks into differentiation, when a number of EBs 

(<10%) fully inactivate the reporter. D, D’. Representative images of both types of EBs at 6 weeks of 

differentiation that clearly retain (EGFP+) or extinguish (EGFP-) the reporter expression in majority 

of their cells, and were used for the differential expression analysis. E, E’. By 8 weeks, only low level 

of EGFP expression persists in some of the EBs, and virtually all expression is lost by week 12 (See 

Supplementary Figure 4). F. Representation of the quantification of EGFP+ and EGFP- fractions in 

iPSC- reporter derived EBs. Scored EB number N>40 for each time point. G. qPCR analysis of the 

expression of pluripotency marker POU5F1/OCT4, and mesodermal (EOMESODERMIN) and 

neuroepithelial (PAX6) markers in EGFP
+
 and EGFP

-
 EBs at 6 weeks. Persistence of EGFP correlates 

with high levels of residual POU5F1/OCT4 expression. See Discussion for more detail. Data for all 

genes is normalised against the internal GAPDH control, error bars-SEM values (N=3). Scale bar = 

500µm. 
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analysis. 

Gene Target Forward Primer Reverse Primer

POU5F1 TGAAGCTGGAGAAGGAGAAG ATCGGCCTGTGTATATCCC

SOX2 CCACCTACAGCATGTCCTACTCG GGGAGGAAGAGGTAACCACAGG

CDX2 GGAGCTGGAGAAGGAGTTT TGATTTTCCTCTCCTTTGCTC

PAX6 CAGCACCAGTGTCTACCAACCA CAGATGTGAAGGAGGAAACCG

EOMES CAAATTCCACCGCCACCAAACTGA TTGTAGTGGGCAGTGGGATTGAGT

GAPDH ATGGGGAAGGTGAAGGTCG TAAAAGCAGCCCTGGTGACC

SOX17 GGCGCAGCAGAATCCAGA CCACGACTTGCCCAGCAT

SOX2-2 GCTACAGCATGATGCAGGACCA TCTGCGAGCTGGTCATGGAGTT
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Table 2. Characterisation of stable  EOS(C3+)-EiP hPSC clones used in this study 

Cell type Cell line Clone Karyotype 
% 

EGFP
+* 

% 

OCT4
+*

 

% 

TRA1-

60* 

NANOG
+
(IF

¥
) 

hES 

HES3 

3.1 Normal ♀ 91.2 97.1 97.9 Yes 

3.2 Normal ♀ 89.7 96.9 98.2 Yes 

3.3 N/A 86.8 96.2 98.0 Yes 

H9 

#1 Normal ♀ 91.7 96.7 97.1 Yes 

#2 Normal ♀ 94.2 98.6 99.3 Yes 

#3 Normal ♀ 92.3 99.3 98.4 Yes 

iPS WT11TF 

#1 Normal ♂ 93.8 98.1 98.9 Yes 

#2 Normal ♂ 94.1 98.3 97.9 Yes 

#3 Normal ♂ 92.3 97.8 98.4 Yes 

 

* in cultures kept under continuous selection with  2µg/mL puromycin for 2 

weeks 

¥  >95% positive by immunofluorescent staining for nuclear NANOG protein 

N/A not available  
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 stable selectable pluripotency reporter lines in hES and transgene-free iPS cells 

 more sensitive pluripotency readout than conventional surface markers 

 pluripotency enrichment facilitates directed differentiation protocols 

 reveals heterogeneity in conventional embryoid body assays 


