111 research outputs found
Realistic shell-model calculations: current status and open problems
The main steps involved in realistic shell-model calculations employing
two-body low-momentum interactions are briefly reviewed. The practical value of
this approach is exemplified by the results of recent calculations and some
remaining open questions and directions for future research are discussed.Comment: 12 pages, 2 figures, contribution to J. Phys G, Special Issue, Focus
Section: Open Problems in Nuclear Structur
Recommended from our members
The Magdalena Ridge Observatory Interferometer: 2014 status update
The Magdalena Ridge Observatory Interferometer has been designed to be a 10 × 1.4 m aperture long-baseline optical/near-infrared interferometer in an equilateral "Y" configuration, and is being deployed west of Socorro, NM on the Magdalena Ridge. Unfortunately, first light for the facility has been delayed due to the current difficult funding regime, but during the past two years we have made substantial progress on many of the key subsystems for the array. The design of all these subsystems is largely complete, and laboratory assembly and testing, and the installation and site acceptance testing of key components on the Ridge are now underway. This paper serves as an overview and update on the facility's present status and changes since 2012, and the plans for future activities and eventual operations of the facilities. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.The Magdalena Ridge Observatory Interferometer is funded by the U.S. Department of Transportation, the State of New
Mexico, and New Mexico Tech with previous funding from the Navy Research Laboratory (NRL, agreement no.
N00173-01-2-C902).This is the final published version of the article, also available from SPIE at http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1891908. Copyright 2014 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. http://dx.doi.org/10.1117/12.205733
Population Analysis of the Fusarium graminearum Species Complex from Wheat in China Show a Shift to More Aggressive Isolates
A large number of Fusarium isolates was collected from blighted wheat spikes originating from 175 sampling sites, covering 15 provinces in China. Species and trichothecene chemotype determination by multilocus genotyping (MLGT) indicated that F. graminearum s. str. with the 15-acetyl deoxynivalenol (15ADON) chemotype and F. asiaticum with either the nivalenol (NIV) or the 3-acetyl deoxynivalenol (3ADON) chemotype were the dominant causal agents. Bayesian model-based clustering with allele data obtained with 12 variable number of tandem repeats (VNTR) markers, detected three genetic clusters that also show distinct chemotypes. High levels of population genetic differentiation and low levels of effective number of migrants were observed between these three clusters. Additional genotypic analyses revealed that F. graminearum s. str. and F. asiaticum are sympatric. In addition, composition analysis of these clusters indicated a biased gene flow from 3ADON to NIV producers in F. asiaticum. In phenotypic analyses, F. asiaticum that produce 3ADON revealed significant advantages over F. asiaticum that produce NIV in pathogenicity, growth rate, fecundity, conidial length, trichothecene accumulation and resistance to benzimidazole. These results suggest that natural selection drives the spread of a more vigorous, more toxigenic pathogen population which also shows higher levels of fungicide resistance
An Extreme Precision Radial Velocity Pipeline: First Radial Velocities from EXPRES
The EXtreme PREcision Spectrograph (EXPRES) is an environmentally stabilized,
fiber-fed, , optical spectrograph. It was recently commissioned at
the 4.3-m Lowell Discovery Telescope (LDT) near Flagstaff, Arizona. The
spectrograph was designed with a target radial-velocity (RV) precision of
30. In addition to instrumental innovations, the EXPRES
pipeline, presented here, is the first for an on-sky, optical, fiber-fed
spectrograph to employ many novel techniques---including an "extended flat"
fiber used for wavelength-dependent quantum efficiency characterization of the
CCD, a flat-relative optimal extraction algorithm, chromatic barycentric
corrections, chromatic calibration offsets, and an ultra-precise laser
frequency comb for wavelength calibration. We describe the reduction,
calibration, and radial-velocity analysis pipeline used for EXPRES and present
an example of our current sub-meter-per-second RV measurement precision, which
reaches a formal, single-measurement error of 0.3 for an
observation with a per-pixel signal-to-noise ratio of 250. These velocities
yield an orbital solution on the known exoplanet host 51 Peg that matches
literature values with a residual RMS of 0.895
The Vitamin B1 Metabolism of Staphylococcus aureus Is Controlled at Enzymatic and Transcriptional Levels
Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels
Analysis of the Aspergillus fumigatus Proteome Reveals Metabolic Changes and the Activation of the Pseurotin A Biosynthesis Gene Cluster in Response to Hypoxia
The mold Aspergillus fumigatus is the most important airborne fungal pathogen. Adaptation to hypoxia represents an important virulence attribute for A. fumigatus. Therefore, we aimed at obtaining a comprehensive overview about this process on the proteome level. To ensure highly reproducible growth conditions, an oxygen-controlled, glucose-limited chemostat cultivation was established. Two-dimensional gel electrophoresis analysis of mycelial and mitochondrial proteins as well as two-dimensional Blue Native/SDS-gel separation of mitochondrial membrane proteins led to the identification of 117 proteins with an altered abundance under hypoxic in comparison to normoxic conditions. Hypoxia induced an increased activity of glycolysis, the TCA-cycle, respiration, and amino acid metabolism. Consistently, the cellular contents in heme, iron, copper, and zinc increased. Furthermore, hypoxia induced biosynthesis of the secondary metabolite pseurotin A as demonstrated at proteomic, transcriptional, and metabolite levels. The observed and so far not reported stimulation of the biosynthesis of a secondary metabolite by oxygen depletion may also affect the survival of A. fumigatus in hypoxic niches of the human host. Among the proteins so far not implicated in hypoxia adaptation, an NO-detoxifying flavohemoprotein was one of the most highly up-regulated proteins which indicates a link between hypoxia and the generation of nitrosative stress in A. fumigatus
Deep Sequencing Whole Transcriptome Exploration of the σE Regulon in Neisseria meningitidis
Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ70-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σE regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σE regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σE is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σE operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σE dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides
State of the Field: Extreme Precision Radial Velocities
The Second Workshop on Extreme Precision Radial Velocities defined circa 2015
the state of the art Doppler precision and identified the critical path
challenges for reaching 10 cm/s measurement precision. The presentations and
discussion of key issues for instrumentation and data analysis and the workshop
recommendations for achieving this precision are summarized here.
Beginning with the HARPS spectrograph, technological advances for precision
radial velocity measurements have focused on building extremely stable
instruments. To reach still higher precision, future spectrometers will need to
produce even higher fidelity spectra. This should be possible with improved
environmental control, greater stability in the illumination of the
spectrometer optics, better detectors, more precise wavelength calibration, and
broader bandwidth spectra. Key data analysis challenges for the precision
radial velocity community include distinguishing center of mass Keplerian
motion from photospheric velocities, and the proper treatment of telluric
contamination. Success here is coupled to the instrument design, but also
requires the implementation of robust statistical and modeling techniques.
Center of mass velocities produce Doppler shifts that affect every line
identically, while photospheric velocities produce line profile asymmetries
with wavelength and temporal dependencies that are different from Keplerian
signals.
Exoplanets are an important subfield of astronomy and there has been an
impressive rate of discovery over the past two decades. Higher precision radial
velocity measurements are required to serve as a discovery technique for
potentially habitable worlds and to characterize detections from transit
missions. The future of exoplanet science has very different trajectories
depending on the precision that can ultimately be achieved with Doppler
measurements.Comment: 45 pages, 23 Figures, workshop summary proceeding
- …