14 research outputs found

    Impact of green clay authigenesis on element sequestration in marine settings

    Get PDF
    Retrograde clay mineral reactions (reverse weathering), including glauconite formation, are first-order controls on element sequestration in marine sediments. Here, we report sub- stantial element sequestration by glauconite formation in shallow marine settings from the Triassic to the Holocene, averaging 3 ± 2 mmol·cm−²·kyr−1 for K, Mg and Al, 16 ± 9 mmol·cm −²·kyr−1 for Si and 6 ± 3 mmol·cm−²·kyr−1 for Fe, which is ~2 orders of magnitude higher than estimates for deep-sea settings. Upscaling of glauconite abundances in shallow-water (0–200 m) environments predicts a present-day global uptake of ~≤ 0.1 Tmol·yr−1 of K, Mg and Al, and ~0.1–0.4 Tmol·yr−1 of Fe and Si, which is ~half of the estimated Mesozoic elemental flux. Clay mineral authigenesis had a large impact on the global marine element cycles throughout Earth’s history, in particular during ‘greenhouse’ periods with sea level highstand, and is key for better understanding past and present geochemical cycling in marine sediments

    Revisiting Glauconite Geochronology: Lessons Learned from In Situ Radiometric Dating of a Glauconite-Rich Cretaceous Shelfal Sequence

    Get PDF
    The scarcity of well-preserved and directly dateable sedimentary sequences is a major impediment to inferring the Earth’s paleo-environmental evolution. The authigenic mineral glauconite can potentially provide absolute stratigraphic ages for sedimentary sequences and constraints on paleo-depositional conditions. This requires improved approaches for measuring and interpreting glauconite formation ages. Here, glauconite from a Cretaceous shelfal sequence (Langenstein, northern Germany) was characterized using petrographical, geochemical (EMP), andmineralogical (XRD) screening methods before in situ Rb-Sr dating via LA-ICP-MS/MS. The obtained glauconite ages (~101 to 97 Ma) partly overlap with the depositional age of the Langenstein sequence (±3 Ma), but without the expected stratigraphic age progression, which we attribute to detrital and diagenetic illitic phase impurities inside the glauconites. Using a novel age deconvolution approach, which combines the new Rb-Sr dataset with published K-Ar ages, we recalculate the glauconite bulk ages to obtain stratigraphically significant ‘pure’ glauconite ages (~100 to 96 Ma). Thus, our results show that pristine ages can be preserved in mineralogically complex glauconite grains even under burial diagenetic conditions (T < 65 ◦C; <1500 m depth), confirming that glauconite could be a suitable archive for paleo-environmental reconstructions and direct sediment dating.Esther Scheiblhofer, Ulrike Moser, Stefan Löhr, Markus Wilmsen, Juraj Farkaš, Daniela Gallhofer, Alice Matsdotter Bäckström, Thomas Zack, and Andre Balderman

    The Phanerozoic δ88/86Sr Record of Seawater: New Constraints on Past Changes in Oceanic Carbonate Fluxes

    Get PDF
    The isotopic composition of Phanerozoic marine sediments provides important information about changes in seawater chemistry. In particular, the radiogenic strontium isotope (87Sr/86Sr) system is a powerful tool for constraining plate tectonic processes and their influence on atmospheric CO2 concentrations. However, the 87Sr/86Sr isotope ratio of seawater is not sensitive to temporal changes in the marine strontium (Sr) output flux, which is primarily controlled by the burial of calcium carbonate (CaCO3) at the ocean floor. The Sr budget of the Phanerozoic ocean, including the associated changes in the amount of CaCO3 burial, is therefore only poorly constrained. Here, we present the first stable isotope record of Sr for Phanerozoic skeletal carbonates, and by inference for Phanerozoic seawater (δ88/86Srsw), which we find to be sensitive to imbalances in the Sr input and output fluxes. This δ88/86Srsw record varies from ∼0.25‰ to ∼0.60‰ (vs. SRM987) with a mean of ∼0.37‰. The fractionation factor between modern seawater and skeletal calcite Δ88/86Srcc-sw, based on the analysis of 13 modern brachiopods (mean δ88/86Sr of 0.176±0.016‰, 2 standard deviations (s.d.)), is -0.21‰ and was found to be independent of species, water temperature, and habitat location. Overall, the Phanerozoic δ88/86Srsw record is positively correlated with the Ca isotope record (δ44/40Casw), but not with the radiogenic Sr isotope record ((87Sr/86Sr)sw). A new numerical modeling approach, which considers both δ88/86Srsw and (87Sr/86Sr)sw, yields improved estimates for Phanerozoic fluxes and concentrations for seawater Sr. The oceanic net carbonate flux of Sr (F(Sr)carb) varied between an output of -4.7x1010mol/Myr and an input of +2.3x1010mol/Myr with a mean of -1.6x1010mol/Myr. On time scales in excess of 100Myrs the F(Sr)carb is proposed to have been controlled by the relative importance of calcium carbonate precipitates during the “aragonite” and “calcite” sea episodes. On time scales less than 20Myrs the F(Sr)carb seems to be controlled by variable combinations of carbonate burial rate, shelf carbonate weathering and recrystallization, ocean acidification, and ocean anoxia. In particular, the Permian/Triassic transition is marked by a prominent positive δ88/86Srsw-peak that reflects a significantly enhanced burial flux of Sr and carbonate, likely driven by bacterial sulfate reduction (BSR) and the related alkalinity production in deeper anoxic waters. We also argue that the residence time of Sr in the Phanerozoic ocean ranged from ∼1Myrs to ∼20Myrs

    Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion

    Get PDF
    AbstractThis study investigates calcium isotope variations (δ44/40Ca) in late Silurian marine carbonates deposited in the Prague Basin (Czech Republic), which records one of the largest positive carbon isotope excursion (CIE) of the entire Phanerozoic, the mid-Ludfordian CIE, which is associated with major climatic changes (abrupt cooling) and global sea-level fluctuations. Our results show that during the onset of the CIE, when δ13C increases rapidly from ∼0‰ to ∼8.5‰, δ44/40Ca remains constant at about 0.3±0.1‰ (relative to NIST 915a), while 87Sr/86Sr in well-preserved carbonates are consistent with a typical Ludfordian seawater composition (ranging from ∼0.70865 to ∼0.70875). Such decoupling between δ13C and δ44/40Ca trends during the onset of the CIE is consistent with the expected order-of-magnitude difference in the residence times of Ca (∼106yr) and C (∼105yr) in the open ocean, suggesting that the mid-Ludfordian CIE was caused by processes where the biogeochemical pathways of C and Ca in seawater were mechanistically decoupled. These processes may include: (i) near shore methanogenesis and photosynthesis, (ii) changes in oceanic circulation and stratification, and/or (iii) increased production and burial of organic C in the global ocean. The latter, however, is unlikely due to the lack of geological evidence for enhanced organic C burial, and also because of unrealistic parameterization of the ocean C cycle needed to generate the observed CIE over the relatively short time interval. In contrast, higher up in the section where δ13C shifts back to pre-excursion baseline values, there is a correlated shift to higher δ44/40Ca values. Such coupling of the records of Ca and C isotope changes in this part of the study section is inconsistent with the abovementioned differences in oceanic Ca and C residence times, indicating that the record of δ44/40Ca changes does not faithfully reflect the evolution of the oceanic Ca reservoir, but rather some local processes in the Prague Basin. These can be related to restricted elemental/sediment cycling involving mixing of isotopically distinct Ca sources and carbonate polymorphs (calcite vs. aragonite), and/or possible kinetic Ca isotope effects due to changes in the rate of marine carbonate formation. Evidence supporting the ‘kinetic’ effect in the studied mid-Ludfordian carbonates is indicated by correlated δ44/40Ca and Sr-concentration data (rs=−0.76, p<0.001, n=41) yielding a slope of −0.00097, which is indistinguishable from the ‘kinetic’ slope of abiotic calcite precipitation. Kinetic processes are integral to the model of rapid carbonate precipitation recently proposed by Kozłowski (2015), to explain the origin of the mid-Ludfordian CIE, involving intense methanogenesis/photosynthesis in near shore settings coupled with rapid CaCO3 precipitation (i.e., massive whitings events) and eustatically-controlled carbonate hypersaturation of seawater. More Ca isotope studies are needed to shed light on the question of whether kinetics or mineralogy controls the coupled variations in carbonate δ44/40Ca and δ13C records observed in this study and other large positive CIEs in geological record

    Recurring Asystole and Paradoxical Air Embolization in a Patient with a Patent Foramen Ovale Treated with Home Parenteral Nutrition

    Get PDF
    Home parenteral nutrition is a therapeutic option for chronic intestinal failure. A tunnelled central venous catheter is commonly used for self-application of nutrition and hydration over a long period of time; that is, months or years. Air embolization within the venous circulation can be caused by inconsistent self-handling of the catheter in combination with air bubbles in the infusion set. Paradoxical air embolization within the brain and coronary arteries together with catheter perforation is a rare medical and technical complication. The authors report the case of a 63-year-old woman with type 3 chronic intestinal failure treated with home parenteral nutrition. During the first year of treatment and use of the catheter a fatal complication occurred. The patient experienced recurring asystolic episodes and strokes with monoplegia during flushing of the catheter. Although 2 resuscitations were successful, the third was not, and the patient died. The cause of these life-threatening complications was an unknown patent foramen ovale, with paradoxical air embolization within the coronary and brain arteries. The authors discuss the clinical consequences of arterial and venous air embolization, the differences between these and the therapeutic algorithm with a link to practice

    Copper Isotope Fractionation in Archean Hydrothermal Systems: Evidence From the Mesoarchean Carlow Castle Cu‐Co‐Au Deposit

    No full text
    Abstract Copper isotope analysis has emerged as a promising tool for understanding genetic processes in Cu ore deposits. However, applications of this analytical technique to Archean Cu deposits have been extremely limited, even though Archean terranes are among the most economically endowed on Earth. As such, this study presents the first Cu isotope analysis of an Archean Cu deposit, the Mesoarchean Carlow Castle hydrothermal Cu‐Co‐Au deposit. Archean primary Cu sulfide ore samples and Cenozoic supergene Cu ore samples were analyzed. Primary ore samples are isotopically light, with δ65Cu values ranging between −0.80 ± 0.02‰ and 0.00 ± 0.007‰, whilst supergene samples are isotopically heavier and range between −0.50 ± 0.01‰ and 0.62 ± 0.005‰. In primary ore samples, a relationship is observed between the Cu isotope signature, ore grade, and alteration assemblage that records the isotopic and physicochemical evolution of the Carlow Castle deposit's hydrothermal ore‐forming system. A mafic igneous source is suggested as a metal source in the Carlow Castle Cu‐Co‐Au deposit. The limited heavy isotopic fractionation of supergene Cu ore samples in this study is interpreted to reflect limited redox cycling of Cu due to in situ oxidative weathering of vein‐hosted Cu sulfides in the overlying Cenozoic supergene system. This differs from previously studied deposits where significant Cu transport and multiple stages of isotopic enrichment are often evident in supergene Cu enrichment layers. The results of this study suggest that Cu isotope analysis could be valuable in understanding genetic processes in hydrothermal Cu deposits, including Archean ore deposits and terranes

    Testing Nano-Powder and Fused-Glass Mineral Reference Materials for In Situ Rb-Sr Dating of Glauconite, Phlogopite, Biotite and Feldspar via LA-ICP-MS/MS

    Get PDF
    Reference materials (RMs) with well-characterised composition are necessary for reliable quantification and quality control of isotopic analyses of geological samples. For in situ Rb-Sr analysis of silicate minerals via laser ablation inductively coupled plasma tandem mass spectrometry (LA-ICP-MS/MS) with a collision/reaction cell, there is a general lack of mineral-specific and matrix-matched RMs, which limits wider application of this new laser-based dating technique to certain minerals. In this work, pressed nano-powder pellets (NP) of four RMs, GL-O (glauconite), Mica-Mg (phlogopite), Mica-Fe (biotite) and FK-N (K-feldspar), were analysed and tested for in situ Rb-Sr dating, complemented by isotope dilution (ID) MC-ICP-MS Rb-Sr analyses of GL-O and Mica-Mg. In addition, we attempted to develop alternative flux-free and fused 'mineral glasses' from the above RMs for in situ Rb-Sr dating applications. Overall, the results of this study showed that among the above RMs only two NP (Mica-Mg-NP and GL-O-NP) were suitable and robust for in situ dating applications. These two nano-powder reference materials, Mica-Mg-NP and GL-O-NP, were thus used as primary RMs to normalise and determine Rb-Sr ages for three natural minerals: MDC phlogopite and GL-O glauconite grains, and also Mica-Fe-NP (biotite). Our in situ analyses of the above RMs yielded Rb-Sr ages that are in good agreement (within 8%) of published ages, which suggests that both Mica-Mg-NP and GL-O-NP are suitable RMs for in situ Rb-Sr dating of phlogopite, glauconite and biotite. However, using secondary RMs is recommended to monitor the quality of the obtained ages.ISSN:1639-4488ISSN:1751-908
    corecore