7 research outputs found

    Estudio teórico y aplicado del potencial de la espectrometría de movilidad iónica

    Get PDF
    Ion mobility spectrometry (IMS) is an analytical technique based on the separation of gaseous ions under the influence of an electric field through an inert gas atmosphere. Some of the main limitations of IMS, depending on the context, may be the limited quantification capacity of compounds in real samples since narrow linear quantification ranges are normally obtained; the low selectivity due to the low resolution power of this type of equipment; and the difficulty of unequivocally identifying compounds in real samples since the existing databases are not as up-to-date as for other technologies such as mass spectrometry (MS). Therefore, it is evident that there is a demand for more selective methodologies and that provide greater analyte detection and quantification capacity. With these premises, it can be said that the greatest current challenge of the IMS is to maximize the detection capacity of the technique in order to achieve the unambiguous identification of a high number of analytes. This challenge is currently utopian when working with complex samples. For this reason, the main motivation of this Doctoral Thesis was to seek solutions for the different challenges that the IMS currently faces in a theoretical and applied context. The basic objective of the research was to explore the potential of IMS by using theoretical and applied strategies to improve the detection and identification coverage of the analysis carried out with this technology. These new strategies were applied throughout the main steps of the analytical process and allowed improving basic analytical features such as the selectivity and sensitivity of optimized analysis methods and their detection capacity. The achievement of this basic objective leaded to analysis methods of standards and real samples, such as explosives, drugs, soil, rosemary plant, olives and mainly different types of olive oils. This basic objective was divided into three general objectives according to the different research topics to address in this Doctoral Thesis: a) To take benefits derived from the study of theoretical aspects of IMS for improving the interpretation of IMS spectra and from the use of additional features such as structural information to enhance qualitative analysis; b) To develop approaches to improve the detection and identification capacity in IMS analysis; and c) To exploit the opportunities of gas chromatography (GC)-IMS and IMS devices for food analysis as an expanding application area in IMS based on untargeted analysis methods. In this context, the Thesis has included the following studies: (i) To study about the fundamentals of the formation of product ions through the modeling of ions stability using ab initio computations to math these results with the spectral patterns and structure of ions [1]. (ii) To explore the fragmentation of ions using an external electric field and the potential of the extra information of these fragments to enhance the rates of categorization by chemical class using neural networks [2]. (iii) To explore a thermal desorption (TD)-IMS device to obtain spectral fingerprints of Cannabis herbal samples, with and without pretreatment for rapid assignment to their different chemotypes by using principal component análisis (PCA) and linear discriminant analysis (LDA) [3]. (iv) To achieve the selectivity in response to trinitrotoluene (TNT) through reactive removal of interfering ions following mobility isolation using a tandem IMS with reactive stage as detection system [4]. (v) To develop a pioneer online coupling of supercritical fluid extraction (SFE) as sample introduction system (SIS) prior IMS using a column filled with Tenax TA material as sorbent trap to coupled both devices to improve analytical properties such as sensitivity and selectivity of future IMS methods [5]. (vi) To carry out a bibliographical study which gather and critically discuss recent publications related to analytical techniques to distinguish olive oils according to their quality as extra virgin (EVOO), virgin (VOO) or lampante (LOO) [6]. (vii) To investigate and compare different chemometric approaches for olive oil classification as EVOO, VOO or LOO using GC-IMS to get the most robust model over time [7]. (viii) To evaluate the combination of the results of orthogonal instrumental techniques to differentiate EVOO, VOO or LOO to imitate the expert panels [8]. (ix) To analyze olive and olive oil samples according with their production system to classify them as organic or conventional using ultraviolet (UV)-IMS, GC-IMS, GC-MS and/or capillary electrophoresis (CE)-UV [9].La espectrometría de movilidad iónica (IMS en inglés) es una técnica analítica que se basa en la separación de iones gaseosos bajo la influencia de un campo eléctrico a través de una atmósfera de gas inerte. Algunas de las principales limitaciones de la IMS, dependiendo del contexto, pueden ser la limitada capacidad de cuantificación de compuestos en muestras reales ya que se obtienen normalmente rangos lineales de cuantificación muy estrechos; la escasa selectividad debido al bajo poder de resolución de este tipo de equipos; y la dificultad de identificación de forma inequívoca de compuestos en muestras reales ya que las bases de datos existentes no están tan actualizadas como para otras tecnologías como la espectrometría de masas (MS en inglés). Por tanto, resulta evidente que existe una demanda de metodologías más selectivas y que proporcionen mayor capacidad de detección y cuantificación de analitos. Con estas premisas, se puede decir que el mayor reto actual de la IMS es maximizar la capacidad de detección de la técnica con el fin de conseguir la identificación inequívoca de un alto número de analitos. Este reto es actualmente utópico cuando se trabaja con muestras complejas. Por ello, la principal motivación de esta Tesis Doctoral fue buscar soluciones para los distintos retos a los que se enfrenta actualmente la IMS en un contexto teórico y aplicado. El objetivo básico de la investigación fue explorar el potencial de la IMS mediante el uso de estrategias teóricas y aplicadas para mejorar la capacidad de detección e identificación de los análisis realizados con esta tecnología. Estas nuevas estrategias se aplicaron a lo largo de las etapas principales del proceso analítico y permitieron mejorar características analíticas básicas, como la selectividad y la sensibilidad, de los métodos de análisis optimizados y su capacidad de detección. El logro de este objetivo básico condujo a métodos de análisis de estándares y muestras reales, como explosivos, drogas, suelo, plantas de romero, aceitunas y principalmente diferentes tipos de aceites de oliva. Este objetivo básico se dividió en tres objetivos generales de acuerdo con los diferentes temas de investigación para abordar en esta Tesis Doctoral: a) aprovechar los beneficios derivados del estudio de los aspectos teóricos de la IMS para mejorar la interpretación de los espectros de IMS y del uso de características adicionales como información estructural para mejorar el análisis cualitativo; b) desarrollar herramientas para mejorar la capacidad de detección e identificación en los análisis de IMS; y c) aprovechar las oportunidades de los instrumentos de cromatografía de gases (GC en inglés)-IMS e IMS para el análisis de alimentos como un área de aplicación en expansión en IMS basado en métodos de análisis no dirigidos. En este contexto, la Tesis ha incluido los siguientes estudios: (i) Estudiar los fundamentos de la formación de iones producto a través del modelado computacional de la estabilidad de los iones utilizando cálculos ab initio para combinarlos con los patrones espectrales y la estructura de los iones [1]. (ii) Explorar la fragmentación de iones utilizando un campo eléctrico externo y el potencial de la información adicional de estos fragmentos para mejorar las tasas de categorización por clase química utilizando redes neuronales [2]. (iii) Explorar un equipo de desorción térmica (TD en inglés)-IMS para obtener huellas espectrales de muestras de plantas de cannabis, con y sin pretratamiento, para la rápida asignación de los diferentes quimiotipos mediante análisis de componentes principales (PCA en inglés) y análisis discriminante lineal (LDA en inglés) [3]. (iv) Lograr la respuesta selectiva del trinitrotolueno (TNT en inglés) a través de la eliminación con etapa reactiva de iones interferentes usando el aislamiento de iones con un IMS en tándem con etapa reactiva como sistema de detección [4]. (v) Desarrollar un acoplamiento on-line pionero de la extracción con fluidos supercríticos (SFE en inglés) como sistema de introducción de muestra previo a la IMS utilizando una columna rellena con el material Tenax TA como trampa sorbente para acoplar ambos dispositivos para mejorar propiedades analíticas como la sensibilidad y la selectividad de futuros métodos IMS [5]. (vi) Realizar un estudio bibliográfico que reúna y discuta críticamente las publicaciones recientes relacionadas con técnicas analíticas para distinguir los aceites de oliva según su calidad como virgen extra (AOVE), virgen (AOV) o lampante (AOL) [6]. (vii) Investigar y comparar diferentes estrategias quimiométricas para la clasificación del aceite de oliva como AOVE, AOV o AOL utilizando la GC-IMS para obtener el modelo más robusto con el tiempo [7]. (viii) Evaluar la combinación de los resultados de técnicas instrumentales ortogonales para diferenciar AOVE, AOV o AOL para imitar los paneles de expertos [8]. (ix) Analizar muestras de aceitunas y aceite de oliva de acuerdo con su sistema de producción para clasificarlas como ecológicas o convencionales usando ultravioleta (UV)-IMS, GC-IMS, GC-MS y/o electroforesis capilar (CE en inglés)- UV [9]

    Deep Learning Techniques to Improve the Performance of Olive Oil Classification

    Get PDF
    The olive oil assessment involves the use of a standardized sensory analysis according to the “panel test” method. However, there is an important interest to design novel strategies based on the use of Gas Chromatography (GC) coupled to mass spectrometry (MS), or ion mobility spectrometry (IMS) together with a chemometric data treatment for olive oil classification. It is an essential task in an attempt to get the most robust model over time and, both to avoid fraud in the price and to know whether it is suitable for consumption or not. The aim of this paper is to combine chemical techniques and Deep Learning approaches to automatically classify olive oil samples from two different harvests in their three corresponding classes: extra virgin olive oil (EVOO), virgin olive oil (VOO), and lampante olive oil (LOO). Our Deep Learning model is built with 701 samples, which were obtained from two olive oil campaigns (2014–2015 and 2015–2016). The data from the two harvests are built from the selection of specific olive oil markers from the whole spectral fingerprint obtained with GC-IMS method. In order to obtain the best results we have configured the parameters of our model according to the nature of the data. The results obtained show that a deep learning approach applied to data obtained from chemical instrumental techniques is a good method when classifying oil samples in their corresponding categories, with higher success rates than those obtained in previous works.Ministerio de Economía y Competitividad TIN2017-88209-C2-2-

    Promotion of self-employed work in the laboratory practices of students of the degree in chemistry: case study

    Get PDF
    En este estudio se ha perseguido incrementar la participación de los alumnos en las prácticas de laboratorio. El motivo principal ha sido evitar que el alumno memorice los conceptos teóricos sin ser capaz de aplicarlos a la resolución de problemas reales, y así adquiera compentencias útiles para cuando se introduzca en el mundo laboral. La nueva metodología se desarrolló en una asignatura optativa del Grado de Química. Para abordar la nueva metodología propuesta en este proyecto, los alumnos elaboraron los protocolos de tres prácticas, sobre tres temas propuestos por el profesorado. Una vez supervisados dichos protocolos por el profesorado, los alumnos las realizaron de forma autónoma en el laboratorio. La evaluación de los alumnos se realizó mediante: elaboración de los protocolos de prácticas, realización de las prácticas de laboratorio (mediante rúbrica) y cuestionario sobre conceptos teóricos (mediante la herramienta Kahoot). Finalmente, se evaluó el grado de aceptación de la nueva metodología docente por parte del alumnado, para detectar aspectos a mejorar para el próximo año académico. Esta metodología ha permitido una mayor implicación del alumnado en las sesiones de laboratorio, ya que pudieron aplicar los conceptos teóricos adquiridos sobre Química Analítica y adquirir competencias, tales como capacidad de aprendizaje autónomo.In this study we have sought to increase the participation of students in laboratory practices. The main reason has been to prevent the student from memorizing the theoretical concepts without being able to apply them to the resolution of real problems, and thus acquire useful competences for when entering into the working world. The new methodology was developed in an optional subject of the Degree in Chemistry. Therefore, it was proposed that they themselves elaborate the protocols of practices, on subjects proposed by the teaching staff, and that they carried them out independently in the laboratory. The evaluation of the students' work was carried out through three activities: preparation of the practical protocols, carrying out of the laboratory practices (using a rubric) and questionnaire on theoretical concepts (using the Kahoot tool). Finally, the degree of acceptance of the new teaching methodology by the students was evaluated. This allowed to detect the aspects to improve for the next academic year. This methodology has allowed a greater involvement of the students in the laboratory sessions, since they could apply the theoretical concepts acquired on Analytical Chemistry and acquire competences, such as autonomous learning capacity

    Thermal desorption-ion mobility spectrometry: A rapid sensor for the detection of cannabinoids and discrimination of Cannabis Sativa L. chemotypes

    Full text link
    Existing analytical techniques used for the determination of cannabinoids in Cannabis sativa L. (Cannabis) plants mostly rely on chromatography-based methods. As a rapid alternative for the direct analysis of them, thermal desorption (TD)-ion mobility spectrometry (IMS) was used for obtaining spectral fingerprints of single cannabinoids from Cannabis plant extracts and from plant residues on hands after their manipulation. The ionization source was 63Ni, with automatic switchable polarity. Although in both ionization modes there were signals in the TD-IMS spectra of the plant extracts and residues that could be assigned to concrete cannabinoids and chemotypes, most of them could not be clearly distinguished. Alternatively, the global spectral data of the plant extracts and residues were pre-processed and then, using principal component analysis (PCA)-linear discriminant analysis (LDA), grouped in function of their chemotype in a more feasible way. Using this approach, the possibility of false positive responses was also studied analyzing other non-Cannabis plants and tobacco, which were clustered in a different group to those of Cannabis. Therefore, TD-IMS, as analytical tool, and PCA-LDA, as a strategy for data reduction and pattern recognition, can be applied for on-site chemotaxonomic discrimination of Cannabis varieties and detection of illegal marijuana since the IMS equipment is portable and the analysis time is highly short

    Fomento del trabajo autónomo en las prácticas de laboratorio de alumnos del grado de química: caso de estudio

    No full text
    En este estudio se ha perseguido incrementar la participación de los alumnos en las prácticas de laboratorio. El motivo principal ha sido evitar que el alumno memorice los conceptos teóricos sin ser capaz de aplicarlos a la resolución de problemas reales, y así adquiera compentencias útiles para cuando se introduzca en el mundo laboral. La nueva metodología se desarrolló en una asignatura optativa del Grado de Química. Para abordar la nueva metodología propuesta en este proyecto, los alumnos elaboraron los protocolos de tres prácticas, sobre tres temas propuestos por el profesorado. Una vez supervisados dichos protocolos por el profesorado, los alumnos las realizaron de forma autónoma en el laboratorio. La evaluación de los alumnos se realizó mediante: elaboración de los protocolos de prácticas, realización de las prácticas de laboratorio (mediante rúbrica) y cuestionario sobre conceptos teóricos (mediante la herramienta Kahoot). Finalmente, se evaluó el grado de aceptación de la nueva metodología docente por parte del alumnado, para detectar aspectos a mejorar para el próximo año académico. Esta metodología ha permitido una mayor implicación del alumnado en las sesiones de laboratorio, ya que pudieron aplicar los conceptos teóricos adquiridos sobre Química Analítica y adquirir competencias, tales como capacidad de aprendizaje autónomo

    Intraoperative positive end-expiratory pressure and postoperative pulmonary complications: a patient-level meta-analysis of three randomised clinical trials.

    No full text
    corecore