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The olive oil assessment involves the use of a standardized sensory analysis according

to the “panel test” method. However, there is an important interest to design novel

strategies based on the use of Gas Chromatography (GC) coupled to mass spectrometry

(MS), or ion mobility spectrometry (IMS) together with a chemometric data treatment

for olive oil classification. It is an essential task in an attempt to get the most robust

model over time and, both to avoid fraud in the price and to know whether it is suitable

for consumption or not. The aim of this paper is to combine chemical techniques and

Deep Learning approaches to automatically classify olive oil samples from two different

harvests in their three corresponding classes: extra virgin olive oil (EVOO), virgin olive oil

(VOO), and lampante olive oil (LOO). Our Deep Learning model is built with 701 samples,

which were obtained from two olive oil campaigns (2014–2015 and 2015–2016). The

data from the two harvests are built from the selection of specific olive oil markers from

the whole spectral fingerprint obtained with GC-IMS method. In order to obtain the

best results we have configured the parameters of our model according to the nature

of the data. The results obtained show that a deep learning approach applied to data

obtained from chemical instrumental techniques is a good method when classifying oil

samples in their corresponding categories, with higher success rates than those obtained

in previous works.

Keywords: olive oil classification, chemometric approaches, GC-IMS method, machine learning, deep learning,

feed-forward neural network

1. INTRODUCTION

Olive oil is a fatty substance which is obtained from the fruit of the olive tree Olea europea L..
There are three different olive oil categories that in descending order of quality are named as extra
virgin olive oil (EVOO), virgin olive oil (VOO), and lampante olive oil (LOO). The first two are
edible while the last one should be refined prior to be consumed. The EVOO flavor is characterized
by a pleasant balanced flavor of green and fruity sensory characteristics. In the VOO and LOO,
some negative attributes (chemical compounds associated to defects) can be detected in different
proportions. The EVOO is the only non-defective olive oil and therefore it is the most appreciated
and expensive. Moreover, selling lower quality olive oils as EVOO is one of the most common olive
oil commercial frauds. The classification of olive oil depends on (i) chemical parameters such as free
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acidity, peroxide value and absorbance (K270 and K232) defined
by the current European Union Regulation (EEC, 1991) and (ii)
a sensory assessment by trained tasters. The sensory assessment
methodology is slow and expensive. Consequently, instrumental
analytical measurements used in conjunction with chemometric
methodologies represent an alternative for reducing costs in the
task of differentiating between olive oil categories.

Few studies (Borràs et al., 2015; Borràs et al., 2016; Garrido-
Delgado et al., 2015; Sales et al., 2017; Contreras et al., 2019b) can
be found to demonstrate the potential of analytical instruments
in order to complement the sensorial analysis to classify olive
oil samples as EVOO, VOO, and LOO. To demonstrate the
usefulness of these methods, the amount of analyzed samples of
different harvests should be high in order to obtain representative
conclusions. Also, the accuracy of the classification models could
be assessed by splitting the total number of analyzed samples in
training and testing sets. And finally, the selection of the correct
chemometric approaches would be a key point to offer a method
which could classify olive oil with guarantee.

Machine learning algorithms have been used in chemistry for
several decades obtaining successful results (Svetnik et al., 2003;
Du et al., 2008). The massive use of these algorithms has been
due to the fact that they create intuitive models which transform
complex input chemical data to an explainable output. However,
in more sophisticated chemical problems, the relationships
between input data and output solutions are not so easy to
identify. Apart from that, some machine learning algorithms
are not efficient enough in dealing with high-dimensional data
when no dimension reduction is performed. Neural networks
solve most of the problems that arise with the use of machine
learning algorithms: firstly, they solve the problem of searching
and identifying existing relationships, resulting black-boxmodels
that are not so interpretable, but with a high level of accuracy.
Lastly, there is no problem with the amount of data, that’s why
they can work efficiently with high-dimensional data.

The use of artificial intelligence to detect the quality of
gastronomic and agricultural products is not a new research field.
In particular, Deep Learning techniques are being used for similar
classification tasks with promising results, for example in the
detection of different types of wine using taste sensors and neural
networks (Riul et al., 2004) and in food classification (Dȩbska
and Guzowska-Świder, 2011). There are also several works with
the objective of determining the quality of olive oil with artificial
neural networks, as expressed in the review from Gonzalez-
Fernandez et al. (2019), however, none of them distinguishes
among the three currently existing categories (EVOO, VOO, and
LOO), they only distinguish between two (EVOO/non EVOO,
LOO/non LOO).

Our aim in this study has been the application of
Deep Learning techniques to a group of significant markers
obtained by analytical instrumentation, specifically based on
gas chromatography coupled to ion mobility spectrometry (GC-
IMS). This approach has been applied to 701 samples of the
categories EVOO, VOO, and LOO, from two different olive oil
harvests (2014–2015 and 2015–2016). The study has been divided
in two parts: on the one hand we have studied the two crops
covering the years 2014–2016 with the aim of improving the

results obtained in a work related to the same dataset (Contreras
et al., 2019b) and on the other hand we have applied well known
algorithms in the literature to these same harvests in order to
compare them with our methodology.

The article is organized as follows: section 2 provides a
detailed description about the technique used to obtain the
data and the algorithm and methodologies applied to carry
out the classification task. Section 3 shows the results obtained
with the previous techniques, and finally, section 4 samples the
conclusions that have been obtained after the study.

2. MATERIALS AND METHODS

In this study, we aimed at providing a data mining approach
based on Deep Learning techniques to classify olive oil
samples based on chemical data. The main goal is to provide
a computational methodology to help and complement the
standardized sensory analysis according to the panel test method
(Circi et al., 2017). The process followed is known as Knowledge
Discovery in Databases (KDD). According to Lara Torralbo
(2014), the KDD process pursues the automated extraction of
non-trivial, implicit, previously unknown and potentially useful
knowledge from large volumes of data. In summary, it can be said
that KDD is a term that refers to the whole process of knowledge
extraction encompassing certain phases or stages as can be seen
in Figure 1.

The stages can be summarized as follows:

• Data acquisition and selection: In this phase, data from
different sources are integrated into a single data repository,
creating a target dataset with interesting variables or data
samples, on which discovery is to be performed.

• Preprocessing: It might not be possible to perform datamining
on the data collected in the dataset, because the data may not
be clean, may contain irrelevant attributes, etc. Different types
of data selection, cleaning and transformation techniques are
applied in this phase, e.g., feature selection, data cleaning.

• Transformation: The data mining algorithms that will be used
in the later phase sometimes need to have a specific data input
format. The transformation phase is in charge of this task, with
techniques such as normalization or auto-scaling.

• Data Mining: this part of the process is in charge of solving
the main problem presented, using classification, regression,
among others.

• Evaluation: After obtaining the data mining models, the last
step of the KDD process consists of evaluating the quality
of these models and interpreting them to obtain the desired
knowledge. In general, in order to evaluate a model, a small
subset of the data (test set) is reserved and used to validate
the model built with the rest of the data (training set). This
approach is known as simple validation.

This process is not static, that is, it can vary depending on
the problem, taking into account the nature of the data chosen
to decide whether to follow all phases, add extra phases or
just follow some of them. We have mainly carried out four
stages: data acquisition, data visualization techniques, data
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FIGURE 1 | Steps in the data analysis methodology.

preprocessing, classification models and finally a validation stage
of the proposed model.

2.1. Data Acquisition
2.1.1. GC-IMS Analysis
Analyses of olive oil samples were carried out with a GC-IMS
commercial instrument (FlavourSpecr). The IMS module was
equipped with a tritium radioactive ionization source of 6.5
KeV and a drift tube of 5 cm long (Gesellschaft für Analytische
Sensorsysteme mbH, G.A.S., Dortmund, Germany). A non-polar
column (94% methyl-5% phenyl-1% vinylsilicone) with 30 m of
length, an internal diameter of 0.32 mm and 0.25 µm of film
thickness (SE-54-CB of CS-Chromatographie Service GmbH,
Düren, Germany) was coupled to the IMS device. In addition, an
automatic sampler unit (CTC-PAL, CTCAnalytics AG, Zwingen,
Switzerland) was employed to improve the reproducibility of
measurements. The GC-IMS method for olive oil analysis was
obtained from a previous work by Contreras et al. (2019b). The
sample introduction system employed was a headspace generated
in a 20 mL glass vial closed with magnetic cap and silicone
septum. Then, 1 g of olive oil was placed in that vial and the
sample was heated at 60◦C for 8 min. The automatic injection
of 200 µL of headspace was carried out with a heated syringe
(80◦C) into the heated injector (80◦C). The injected headspace
was driven into the GC column by using nitrogen 5.0 as carrier
gas at 5 mL min−1 the first 6 min and then it was increased
to 25 mL min−1 until the end of the analysis (23 min). Neutral
analytes were separated at 40◦C. Later, this neutral volatiles were
introduced into the IMS ionization chamber to generate their
corresponding ions. The generation of ions of this IMS device
takes place due to the presence of an excess reagent whose
signal is called reactant ion peak (RIP) which is always registered
in the measurements. In positive polarity, the RIP consist on
hydrated protons generated due to the collision of primary

electrons emitted by the tritium source with nitrogen, and a
subsequent series of reactions. When one analyte (M) enters
into the ionization chamber, the corresponding ion is formed
due to the association of M to this hydrated proton resulting
in the displacement of water molecules (Jurado-Campos et al.,
2018). Then, the ions were separated in the drift tube working
at a constant temperature and voltage of 55◦C and 400 V cm−1,
respectively. A counter-current gas flow of nitrogen was also used
(drift gas) at a 250 mL min−1 rate. This flow is necessary to
eliminate neutral molecules in the drift tube and influences the
separation of ions in it. The values of different IMS parameters
were set at: 32 for average of scans for each spectrum acquired,
100 µs for grid pulse width, 21 ms for repetition rate and 150
kHz for sampling frequency. Finally, two-dimensional GC-IMS
data were acquired in positive mode, represented as topographic
plots in LAV software (version 2.0.0) from G.A.S. So that,
each individual signal or marker included in these 2D maps is
characterized by the retention time of the neutral compound in
the GC column, the drift time of the ion generated in the IMS
(the time that the swarm of ions spend traveling along the drift
tube) and its intensity value which depends on the concentration.
The intensity of each marker can be automatically obtained from
the topographic plots using LAV quantification module tool of
the software.

2.1.2. Datasets
We analyzed 292 olive oil samples from the 2014–2015 harvest
and 409 samples from the 2015-2016 harvest, henceforth named
datasets D1, and D2. For D1, the 292 olive oil samples are divided
in 98 EVOO, 159 VOO and 35 LOO samples. D2 harvest was
composed by 92 EVOO examples, 196 VOO and 121 LOO.

The structure of the dataset for harvest D1 and D2 is the
same, i.e., the datasets have a total of 118 attributes, with
113 being intensity of the markers (Contreras et al., 2019b)
and the remaining others indicate the identifier of the sample
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FIGURE 2 | Number of instances for each olive oil class in harvests from 2014 to 2016.

(“Name”), the class (EVOO, LOO, VOO) to which it belongs
(“Class”), the base value (“Baseline”), the position of the RIP
(“RIP Position”) and the maximum intensity of the RIP (“RIP
Height”) respectively.

2.2. Visualization
Before applying data analysis techniques it is important to know
the nature of the data. The stage of visualization undertakes this
task. In this section we provide some graphical information about
the dataset analyzed. In particular, two different visualizations
have been carried out: first, we show the proportion of each type
of olive oil sample using pie charts and second, we reported
results from principal component analysis to describe possible
partitions in the dataset.

Figure 2 reports the proportion of each type of olive oil
in the different harvests using a pie plot graphic. It can be seen
that the two harvests have very few instances of EVOO compared
to the last. For this reason we decided tomerge these harvests into
one. This union serves to improve the classification algorithm
results since the training set will have more instances. After this
union the distribution of instances is 190 EVOO, 355 VOO, and
156 LOO.

Furthermore, a principal component analysis (PCA) has been
carried out. This study aims at a priori determination of the
number of possible existing partitions. Figure 3 illustrates data
distribution into the first two components of PCA-analysis for
2014–2016 harvest. According to these figures there is not an a
priori clear separation among classes, and therefore we decide to
apply Deep Learning techniques to this problem. Deep learning
techniques are able to learn a meaningful latent space, i.e., find
and represent relationships among attributes that are not known
a priori and are suitable for the olive oil classification problem.

2.2.1. Preprocessing
Two fundamental tasks were carried out in the preprocessing
phase: the normalization of samples with respect to RIP Height

FIGURE 3 | PCA for the 2014–2016 harvest.

in order to reduce potential instrumental variations and auto-
scaling of markers that may improve the results obtained in the
classification task. First, the normalization is made by dividing
each of the values of markers for the maximum value of the RIP,
in order to work with more homogeneous data. Second, after
carrying out several tests, we found out that the auto-scaling
(sometimes also called, standardization, or z-transformation) of
markers resulted in slightly improved classification results. Thus,
each column of the dataset was auto-scaled, i.e., numeric columns
will have zero mean and unit variance. The equation used to do
this task is the following:

z1 =
xi − x̄

s
(1)
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FIGURE 4 | An example of and architecture of two hidden layers for a dataset with three attributes and two possible classes.

where:

• z1: marker auto-scaled,
• x1: marker we want to auto-scale,
• x̄: mean of the values for the marker,
• s: sample standard deviation.

2.2.2. Classification Task
For the classification task, a feed forward artificial neural network
was used. An artificial neural network is a computational learning
algorithm based on the architecture of the biological neural
networks of the brain (Gibson and Patterson, 2016). These
networks seek at finding a function that approximates data
input into a desired output (DeepAI contributors, 2018). The
architecture of an artificial neural network is determined by
three main elements, nodes, connections between nodes and
layers. Nodes are elements that try to model the neurons of
the biological brains. The connections between nodes, such as
synapses in brains, allow signals to be transmitted from one node
to another. The combination of neurons are called a layer, the
set of one or more layers constitutes the neural network. There
are three types of layers: input, hidden and output. The input
layer is composed of neurons that receive data of the problem
that is under study. In this case, the input layer obtains the data
of each of the features of the dataset, in our problem markers
of the harvests. The hidden layers are those between the input
and the output, so they do not have a direct connection to the
environment. The output layer is the one that is responsible
for providing the classification result obtained after applying
the learning algorithm. Depending on the number of layers and
the direction in which the information flows, several types of
neural networks can be distinguished (Larranaga et al., 2019). A
multilayer feed forward network (Gibson and Patterson, 2016)

has been used to classify olive oils in our study. Amultilayer feed-
forward network is a neural network with an input layer, one or
more hidden layers, and an output layer where each layer has one
or more artificial neurons as can be seen in Figure 4.

Input layer. This is the first layer of a feed forward neural
network. It receives the information of the problem, i.e., the input
dataset. The number of neurons in this layer is usually the same as
the number of attributes of the problem under study. Input layers
in classical feed-forward neural networks are fully connected to
the next hidden layer.

Hidden layer. The number of hidden layer in a feed forward
neural network depends on the problem. Hidden layers are in
charge of encoding and transporting the information extracted
from the dataset to the following layers. These layers are also the
key that allow neural networks to model non-linear functions.

Output layer. This layer is the one that allows to obtain the
prediction of the model on the data. Depending on the nature of
the problem, this prediction can be a real value (regression) or
a set of probabilities (classification). To obtain these values, the
corresponding activation function is chosen. In our case we have
chosen the softmax function that represents the distribution of
probability over K different outputs. In our example, the output
is a vector with three values (or two values depending on whether
the model is ternary or binary) that indicates the probability that
an example belongs to one class or another.

2.2.3. Validation
The previous study carried out on this same dataset (Contreras
et al., 2019b) used the accuracy as the validation metric. In order
to compare with the previous results we decided to take this
measure to validate the generated model. Accuracy is defined as
the percentage of correctly classified examples from the dataset.
To calculate it, it is necessary to take a look at the confusion
matrix. If we define two variables, P for the positive instances
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FIGURE 5 | Distribution of averages of each marker for each of the harvests.

and N for the negative ones, a confusion matrix is a table that
allows for the visualization of the performance of an algorithm,
typically a supervised learning one. It is a table with four different
combination values: the rows indicate the predicted values by
model and the columns represent the actual value of the class.

Taking into account the values of the confusion matrix, the
accuracy score can be defined as follows:

accuracy =
TP + TN

TP + FP + FN + TN
(2)

where:

• TP (True Positive): values correctly classified as positive.
• FP (False Positive): Predicted values with negative label but

which actually belong to the positive class.
• FN (False Negative): incorrectly predicted as negative values

because their real value is positive.
• TN (True Negative): correctly predicted values as negative

since they actually belong to the negative class.

In multi-class classification with N classes, the confusion matrix
has N*N different values and the accuracy score can be obtained
in two different ways by the one vs. all approach or by the one vs.
one. The one vs. all approach involves training a single classifier
per class, with the samples of that class as positive samples and
the remaining as negatives. Finally, accuracy is obtained as a
mean of each of the accuracy obtained individually for each
class. In the other hand, the one vs. one approach considers
each binary pair of classes and trains the classifier on a subset
of data containing those classes. During the classification task,
each classifier predicts one class, and the class which has been
predicted the most is the answer (voting scheme). In this case,
one vs. all methodology was used.

Due to the imbalance between the classes, we have also
decided to take into account other more appropriate measures:
sensitivity and specificity. This measures can be defined
as follows:

sensitivity =
TP

TP + FN
(3)

specificity =
TN

FP + TN
(4)

2.3. Software and Experimental Setting
The neural networks used in this study have been implemented
with the Keras library (Chollet et al., 2015). Keras is a high-
level neural networks API (application programming interface),
written in Python and capable of running on top of Tensorflow.
The standardization of the data as well as the division of the
training set in train and test has been carried out with the scikit-
learn library (Pedregosa et al., 2011). The selection of parameters
of the model for each of the harvests involved executing the
code as many times as the number of possible neurons in
the hidden layer. Due to the large amount of data available,
the executions were performed on an Intel machine, specifically
Intel(R) Core(TM) i7-8700 CPU@ 3.20 GHz, with 64 GB of RAM
and 12 cores. The source code with the different tests performed
in this study can be found in Vega (2019).

3. RESULTS

3.1. Preprocessing of the Data
First, a preprocessing step was performed, this step includes
two sub-processes: in the first place a normalization of the data
with respect to the maximum height of the RIP was carried
out, i.e., each one of the samples is divided by the maximum
value of intensity found in each one of them, in order to
avoid the variations that can be introduced by the instrumental
equipment used. Second, an auto-scaling of the data was carried
out since as a previous study (Han et al., 2003) showed that data
auto-scaling is a necessary step to improve final classification
results. Furthermore, LeCun et al. (2012) have shown that the
convergence of Deep Learning models is usually greater if the
mean of each of the variables of the training set is close to zero.
Because of this, we have auto-scaled the data in order to obtain
better results with Deep Learning techniques.

As we mentioned before, the chemical method used to obtain
the data from D1 and D2 are the same being the number of
markers equal for each case. Thus, after data auto-scaling, a union
of the datasets D1 and D2 was carried out in order to study them
as a whole, henceforth named D1–D2. We could observe in the
Figure 5 that the distribution of averages for each column of the
dataset were very similar between D1 and D2, which is another
motivation behind our decision to merge the two crops.
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3.2. Use of Deep Learning Models for
Classification of Olive Oil Samples
The capabilities of a neural network to make good predictions
depends on its architecture and its parameters, it is an essential
task to define a well structured network before implementing
the model. Parameters which define the model architecture are
known as hyperparameters and the process of assessing the
best configuration for those parameters is called hyperparameter
tuning (Diaz et al., 2017).

For the present study, multilayer and unidirectional (feed-
forward) neural networks have been used, with an input layer,
a hidden and an output layer, with a flow of information that run
from the entrance to the exit, only in one direction.

The first step was to improve the classification of the model
varying the values for the activation function and optimization
algorithm. The best results were obtained with Rectified Linear
Unit function (RELU) and Adam algorithm, respectively. The
second step was to choose the optimal number of hidden layers
for this particular problem. Finally, the number of the neurons
in the hidden layers was optimized. Taking as a guide the rules of
thumb (Heaton, 2008) and the geometric pyramid rule (Masters,
1993) that will be explained below, experiments were performed
for datasets D1–D2 as a whole. In each of these experiments
tests were made varying the number of neurons looking for the
number that provided the best results.

3.2.1. Choosing the Number of Hidden Layers
The universal approximation theorem (Csáji, 2001) states that a
feed-forward network with only a single hidden layer containing
a finite number of neurons can approximate continuous
functions as well as other interesting functions when appropriate
parameters are given. The use of more than one hidden layers are
better for complex datasets than involves time-series or computer
vision. The dataset of this study does not belongs to any of these
two categories, so we considered that one hidden layer is the
best approach.

3.2.2. Choosing the Number of Neurons in the

Hidden Layer
Deciding the correct number of hidden layers is only one part
of the problem. The correctness of the model also depends on
the number of the neurons in the hidden layers. There are
a lot of theorems that provide a first approximation for this
issue. The one selected for our research is called “geometric
pyramid rule” proposed by Masters in Masters (1993). Basically,
this rule asserts that there is no magic formula for selecting
the optimum number of hidden neurons although it provides a
rough approximation for different structure, e.g., for a three layer
network with n input and m output neurons, the hidden layer
would have

√
n×m neurons.

Besides the geometric pyramid rule, a few rules of thumb
methods (Heaton, 2008) have been considered for determining
an acceptable number like the following:

• The number of hidden neurons should be between the size of
the input layer and the size of the output layer.

TABLE 1 | Number of neurons chosen for the hidden layer.

2014–2016 (D1-D2)

Non-standardized Standardized

EVOO/VOO/LOO 32 40

EVOO/non-EVOO 10 3

LOO/non-LOO 68 53

• The number of hidden neurons should be 2/3 the size of the
input layer, plus the size of the output layer.

• The number of hidden neurons should be less than twice the
size of the input layer.

Taking into account these previous rules, we decided to train
the model for each of the possible combinations of neurons
considering the inputs and outputs of the neural network
according to the harvests under study: for D1-D2, tests were
carried out varying the neurons from 2 to 3 to 113 depending
on whether the model distinguishes between two classes (binary
model), that is, between lampante and no lampante (LOO/non-
LOO) or extra or no extra (EVOO/non-EVOO), or between three
(EVOO/VOO/LOO). The Table 1 shows among all the possible
values of neurons, the one that maximizes the accuracy value for
each of the tests. As it can be seen in this table, the number of
neurons for each case is completely different, there is no single
number that ensures the total quality of the model. Although this
process has been very time consuming, it is totally necessary since
it is the first time that Deep Learning techniques have been used
with these specific data, so it was convenient to see each one of the
cases. For future studies we propose training the neural network
with many more examples in order to further homogenize the
parameter selection of the model.

3.3. Training the Model
A train-test split method was used for the validation of themodel.
A training set containing 80% of the samples was used for the
calibration of the models and the remaining 20% of the samples
were used as a validation or blind test. The performance of the
neural network was shown by the accuracy score.

A total of 6 tests with the data from D1 to D2 has been carried
out. The models were tested with auto-scaled and non auto-
scaled data, as well as the division of tests according to the type
of oil. For each of the tests the optimum number of neurons in
the hidden layer has been calculated, so that for each test a model
has been made for each of the possible neurons in the hidden
layer according to the rules described above, specifically 110
iterations for the model that discriminates between the 3 classes
(the number of neurons must be between the output number and
the number of input neurons) and 111 for those that distinguish
between two classes.

3.3.1. Results Obtained for 2014–2016 Harvests
A total of 701 samples from 2014–2016 harvests were studied.
The Deep Learning model was built using 80% of these samples
(a total of 531 olive oil samples, of which 286 where VOO,
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TABLE 2 | Results obtained for 2014–2016 harvests.

Previous

results

Our Results Rate of

increase

(%)Non

standardized

Standardized

EVOO/VOO/LOO 74.29 80.71 81.42 9.59

EVOO/non-EVOO 85.72 88.57 90.00 4.99

LOO/non-LOO 90.71 94.28 95.00 4.72

149 EVOO, and 126 LOO) and the remaining 20% to evaluate
the model (69 VOO, 41 EVOO, and 30 LOO). To compare
our results to those obtained by Contreras et al. (2019b), we
have replicated each of their tests, obtaining 3 different models:
2 binary models and 1 ternary model. The first binary model
allows to differentiate between EVOO and non-EVOO examples,
the second model discriminates between LOO and non LOO,
and finally, the ternary model discriminates between all classes,
i.e., among EVOO, LOO, and VOO. As mentioned above, auto-
scaling seemed to be a good preprocessing task that should
be carried out with this dataset, so the three models obtained
have also been carried out in two different ways, first without
auto-scaling the data and second with auto-scaled data.

Table 2 shows the comparison of results between our study
and the existing previous study as well as the accuracy
increase ratio. We can observe that our results improve the
results obtained without auto-scaling (see column 2 and 3).
Furthermore, the part in which our results are shown verifies that
a previous preprocessing of the data is a good technique, as it
improves the results in comparison to those obtained without this
preprocessing. On the other hand, if we compare our results with
the previous results, we see a significant improvement for each of
the threemodels studied, with the rate of increase always positive.

3.4. Comparison to Other Methods
Ourmethodology has been compared to five different benchmark
methods: K-Nearest Neighbors (Altman, 1992), Support Vector
Machine (Boser et al., 1992), Decision Tree Classifier (Safavian
and Landgrebe, 1991), Logistic Regression (Scott et al., 1991)
and XGBoost (Chen and Guestrin, 2016). The data used for
comparison are the auto-scaled data, since the objective of this
comparison is to provide a comparative framework on the best
results obtained with the proposed methodology.

We have evaluated these methods for D1-D2 harvest data.
Firstly, for accuracy score (Table 3), in EVOO/VOO/LOOmodel,
among the five models used for comparison, XGBoost offers
the best performance. In the case of EVOO/non-EVOO model,
XGBoost is as good as k-NN. Lastly, LOO/non-LOO model
gets higher performance with Logistic Regression. Although the
results are quite satisfactory with benchmark algorithms, none
of the models achieves better results than our Deep Learning
proposal if we take into account the average of the three models
(last row). It can be seen that the best value (in bold) is always the
one in the first column, which is the one corresponding to Deep
Learning. Lastly, for sensitivity (Table 4) and specificity (Table 5)

TABLE 3 | Accuracy comparison with other methods for 2014–2016 (D1-D2)

harvests.

Deep

learning

SVM k-NN Tree Regressor XGBoost

EVOO/VOO/LOO 81.42 73.57 77.14 68.57 77.85 80.71

EVOO/non-EVOO 90.00 85.71 85.71 82.14 85.71 86.42

LOO/non-LOO 95.00 90.00 90.71 84.28 92.85 90.00

88.81 83.09 84.52 78.33 85.47 85.71

TABLE 4 | Sensitivity comparison with other methods for 2014–2016 (D1-D2)

harvests.

Deep

learning

SVM k-NN Tree Regressor XGBoost

EVOO/VOO/LOO 63.47 55.82 59.33 49.76 61.52 64.11

EVOO/non-EVOO 68.29 68.29 63.41 60.97 68.29 68.29

LOO/non-LOO 80.00 56.66 63.33 60.00 76.66 63.33

70.58 60.25 62.02 56.91 68.82 65.24

TABLE 5 | Specificity comparison with other methods for 2014–2016 (D1-D2)

harvests.

Deep

learning

SVM k-NN Tree Regressor XGBoost

EVOO/VOO/LOO 87.55 83.57 85.45 80.00 86.58 87.81

EVOO/non-EVOO 93.93 92.92 94.94 90.90 92.92 93.93

LOO/non-LOO 98.18 99.09 98.18 90.09 97.27 97.27

93.22 91.86 92.85 86.99 92.25 93.00

our proposal is the best if we also take into account the average of
the three models.

4. DISCUSSION

Deep Learning techniques are proving to be one of the best tools
when performing complex tasks that require expert knowledge
(Arel et al., 2010; LeCun et al., 2015). In this study we used
Deep Learning techniques to provide an automatic complement
to the panel test method. This is an essential task to avoid
fraud in the price and to know whether the olive oil is suitable
for consumption or not. This work has shown the feasibility
of a feed forward artificial neural networks-based model as a
classifier to differentiate EVOO, VOO, and LOO oil from GC-
IMS spectroscopy data.

The preprocessing step should be highlighted since the auto-
scaling of data has been a fundamental part of the study carried
out. This step has meant an improvement in the classification
algorithms as can be seen in Table 2.

This study also shows that the neural network architecture
must be different for each of the potential models. The fact that
the number of neurons in the hidden layer is different for each
of the models (binary or ternary) is not surprising; indeed, we
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would even say it is necessary, due the fact that the network must
be adapted to the input data.

Until now, the best works on oil classification (Contreras et al.,
2019b; Gonzalez-Fernandez et al., 2019) worked in a similar way
to our proposal: they first made a chemical treatment to obtain
the data, and then applied some mathematical model to carry out
the olive oil classification. The main advantage of our approach
is that there is a searching for the most suitable parameters, thus
achieving a better adaptation to the input data to achieve themost
accurate results.

One of the objectives of this work has been trying to improve
the results obtained by Contreras et al. (2019a) with D1 and D2
harvests. Considering that in that previous work they obtained
an accuracy of the 74.29% using techniques such as PCA and
OPLS-DA, our work, with an accuracy of 81.42%, has shown that
Deep Learning techniques are a very useful tool to classify olive
oil samples from GC-IMS data.

Additionally, regardless of the number of neurons used, the
best results are obtained for binary models, especially the model
that classify between LOO and non-LOO. This may be due to
the fact that in the case of the ternary model, the elements are
more difficult to split since the VOO is at the crossroads between
EVOO and LOO, which means that the separation between
classes is not so clear.

We have also studied the performance obtained by five
different benchmark methods: k-Nearest Neighbors, Support
Vector Machine, Logistic Regression, Decision Tree Classifier
and XGBoost. Although the performance of these algorithms is
satisfactory, in none of the cases they have improved our Deep
Learning approach.

Finally, some limitations of our study should be noted
and discussed. First, it is known that the success of a Deep
Learning algorithm lies in the amount of data available to
train. In this case, we have only a total of 701 examples.

For further studies, we propose to create synthetic data with
Conditional Generative Adversarial Networks as proposed in
Vega-Márquez et al. (2020). Lastly, another major problem we
have encountered is the imbalance between classes, in olive oil
industry is common to have more instances from VOO that LOO
and EVOO. In order to address this issue we propose to employ
Machine Learning algorithms as SMOTE (Chawla et al., 2002) to
balance classes.
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