1,935 research outputs found

    Cooperative effects in nuclear excitation with coherent x-ray light

    Full text link
    The interaction between super-intense coherent x-ray light and nuclei is studied theoretically. One of the main difficulties with driving nuclear transitions arises from the very narrow nuclear excited state widths which limit the coupling between laser and nuclei. In the context of direct laser-nucleus interaction, we consider the nuclear width broadening that occurs when in solid targets, the excitation caused by a single photon is shared by a large number of nuclei, forming a collective excited state. Our results show that for certain isotopes, cooperative effects may lead to an enhancement of the nuclear excited state population by almost two orders of magnitude. Additionally, an update of previous estimates for nuclear excited state population and signal photons taking into account the experimental advances of the x-ray coherent light sources is given. The presented values are an improvement by orders of magnitude and are encouraging for the future prospects of nuclear quantum optics.Comment: 22 pages, 4 figures, 5 tables; updated to the published version, one additional results tabl

    Gravitational Recoil during Binary Black Hole Coalescence using the Effective One Body Approach

    Full text link
    Using the Effective One Body approach, that includes nonperturbative resummed estimates for the damping and conservative parts of the compact binary dynamics, we compute the recoil during the late inspiral and the subsequent plunge of non-spinning black holes of comparable masses moving in quasi-circular orbits. Further, using a prescription that smoothly connects the plunge phase to a perturbed single black hole, we obtain an estimate for the total recoil associated with the binary black hole coalescence. We show that the crucial physical feature which determines the magnitude of the terminal recoil is the presence of a ``burst'' of linear momentum flux emitted slightly before coalescence. When using the most natural expression for the linear momentum flux during the plunge, together with a Taylor-expanded (v/c)4(v/c)^4 correction factor, we find that the maximum value of the terminal recoil is ∌74\sim 74 km/s and occurs for a mass ratio m2/m1≃0.38m_2/m_1 \simeq 0.38. We comment, however, on the fact that the above `best bet estimate' is subject to strong uncertainties because the location and amplitude of the crucial peak of linear momentum flux happens at a moment during the plunge where most of the simplifying analytical assumptions underlying the Effective One Body approach are no longer justified. Changing the analytical way of estimating the linear momentum flux, we find maximum recoils that range between 49 and 172 km/s. (Abridged)Comment: 46 pages, new figures and discussions, to appear in PR

    Representation reduction and solution space contraction in quasi-exactly solvable systems

    Get PDF
    In quasi-exactly solvable problems partial analytic solution (energy spectrum and associated wavefunctions) are obtained if some potential parameters are assigned specific values. We introduce a new class in which exact solutions are obtained at a given energy for a special set of values of the potential parameters. To obtain a larger solution space one varies the energy over a discrete set (the spectrum). A unified treatment that includes the standard as well as the new class of quasi-exactly solvable problems is presented and few examples (some of which are new) are given. The solution space is spanned by discrete square integrable basis functions in which the matrix representation of the Hamiltonian is tridiagonal. Imposing quasi-exact solvability constraints result in a complete reduction of the representation into the direct sum of a finite and infinite component. The finite is real and exactly solvable, whereas the infinite is complex and associated with zero norm states. Consequently, the whole physical space contracts to a finite dimensional subspace with normalizable states.Comment: 25 pages, 4 figures (2 in color

    Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems

    Full text link
    We show in this article that the Reeh-Schlieder property holds for states of quantum fields on real analytic spacetimes if they satisfy an analytic microlocal spectrum condition. This result holds in the setting of general quantum field theory, i.e. without assuming the quantum field to obey a specific equation of motion. Moreover, quasifree states of the Klein-Gordon field are further investigated in this work and the (analytic) microlocal spectrum condition is shown to be equivalent to simpler conditions. We also prove that any quasifree ground- or KMS-state of the Klein-Gordon field on a stationary real analytic spacetime fulfills the analytic microlocal spectrum condition.Comment: 31 pages, latex2

    Feasibility of an in situ measurement device for bubble size and distribution

    Get PDF
    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCamℱ, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles

    Feasibility of low energy radiative capture experiments at the LUNA underground accelerator facility

    Full text link
    The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been designed to study nuclear reactions of astrophysical interest. It is located deep underground in the Gran Sasso National Laboratory, Italy. Two electrostatic accelerators, with 50 and 400 kV maximum voltage, in combination with solid and gas target setups allowed to measure the total cross sections of the radiative capture reactions 2^2H(p,Îł\gamma)3He and 14^{14}N(p,Îł\gamma)15^{15}O within their relevant Gamow peaks. We report on the gamma background in the Gran Sasso laboratory measured by germanium and bismuth germanate detectors, with and without an incident proton beam. A method to localize the sources of beam induced background using the Doppler shift of emitted gamma rays is presented. The feasibility of radiative capture studies at energies of astrophysical interest is discussed for several experimental scenarios.Comment: Submitted to Eur. Phys. J.

    On the Strength of Spin-Isospin Transitions in A=28 Nuclei

    Full text link
    The relations between the strengths of spin-isospin transition operators extracted from direct nuclear reactions, magnetic scattering of electrons and processes of semi-leptonic weak interactions are discussed.Comment: LaTeX, 8 pages, 1Postscript with figur

    Quantum metastability in a class of moving potentials

    Get PDF
    In this paper we consider quantum metastability in a class of moving potentials introduced by Berry and Klein. Potential in this class has its height and width scaled in a specific way so that it can be transformed into a stationary one. In deriving the non-decay probability of the system, we argue that the appropriate technique to use is the less known method of scattering states. This method is illustrated through two examples, namely, a moving delta-potential and a moving barrier potential. For expanding potentials, one finds that a small but finite non-decay probability persists at large times. Generalization to scaling potentials of arbitrary shape is briefly indicated.Comment: 10 pages, 1 figure
    • 

    corecore