
1 
 

 

Microfluidically Synthesized Au, Pd and AuPd Nanoparticles Supported on 

SnO2 for Gas Sensing Applications 

 

Ghazal Tofighia,1, David Deglerb,1,2, Benjamin Junkerb, Sabrina Müllera, Henning Lichtenberga,c, 

Wu Wangd, Udo Weimarb, Nicolae Barsanb,*, and Jan-Dierk Grunwaldta,c,* 

 

a Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of 

Technology (KIT), Engesserstr. 20, D-76131 Karlsruhe, Germany 

b Institute of Physical and Theoretical Chemistry and Centre for Light-Matter Interaction, Sensors 

& Analytics (LISA+), University of Tübingen, D-72076 Tübingen, Germany 

c Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), 

D-76344 Eggenstein-Leopoldshafen, Germany 

d Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), D-76344 

Eggenstein-Leopoldshafen, Germany  

* Corresponding authors: nb@ipc.uni-tuebingen.de; grunwaldt@kit.edu 

Tel.: +49 721 608-42120 

Fax: +49 721 608-44820 

1 Ghazal Tofighi and David Degler contributed equally to this work. 

2 Present address: European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble, France. 

 

 

 

 

 

 



2 
 

Abstract 

Monometallic Au and Pd nanoparticles (NPs) and homogeneous AuPd nanoalloy particles were 

synthesized in a continuous flow of reactants (HAuCl4, K2PdCl4, NaBH4 and polyvinylpyrrolidone 

(PVP)) using a microfluidic reactor with efficient micromixers. The obtained ultrasmall NPs were 

subsequently deposited onto SnO2 supports with different surface area (32.7 and 3.6 m2 g-1). 

Samples with 1.0 and 0.1 wt.% metal loading were prepared. After calcination at 380 °C for 1 h 

the supported NPs aggregated to some extent. SnO2 supported AuPd nanoalloys with low (0.1 

wt.%) metal loadings showed the smallest NP diameters (~ 5 - 7 nm) and the narrowest size 

distribution among the samples. The gas sensing performance of the materials was investigated at 

300 °C in four different gas atmospheres containing either CO, CH4, ethanol or toluene using dry 

and humid conditions. They exhibited a distinct variation in the response patterns and selectivity 

toward the test gases depending on composition and metal loading: Au increased the sensor signals 

compared to pristine SnO2 in all cases and decreased the interference of water vapor; the supported 

Pd NPs showed a weak response to toluene, strong sensitivity in CO sensing and slightly better 

response in ethanol sensing in humid air compared to dry air. However, they showed a high 

selectivity toward CH4 when used in dry air; AuPd alloy particles provided lower sensor signals 

compared to pristine SnO2 and no remarkable CH4 selectivity, in contrast to the Pd system. 

Operando diffuse reflectance infrared Fourier-transformed spectroscopy (DRIFTS) indicates a 

strong band bending in the case of Pd and AuPd NPs, whereas in the case of Au no band bending 

occured, indicating a strong electronic interaction between the support and Pd-containing NPs 

(Fermi-level control mechanism), and a weak electronic interaction between SnO2 and Au NPs 

(spill-over mechanism). 

Keywords: Microfluidic synthesis, AuPd nanoalloy, Gold, Palladium, SnO2, Gas sensor 
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1. Introduction 

Gas sensing has become increasingly important in our society due to technical innovations and the 

higher living standard[1-4]. Semiconducting metal oxide (SMOX) based materials are widely 

applied in the field of gas sensing for safety, quality control and personnel protection. Their 

applications range from gas bottle leak detection[5] to air quality monitoring, e.g. air intake in 

cars[1, 6].  

Most SMOX sensors are based on SnO2 which has proven to be one of the most inexpensive, best 

performing and most stable sensing materials for reducing gases[7, 8]. The gas sensing mechanism 

in pristine SMOX is based on the reception of gases, i.e. a surface reaction changing the free charge 

carrier concentration at the surface, and transduction, which translates the changes in the charge 

carrier concentration into an electronic signal[1]. A detailed discussion of the fundamental gas 

sensing mechanism of SMOX is found elsewhere[9-11]. 

Pristine SMOX have excellent gas sensing properties in dry air, but lack selectivity and long-term 

stability[11], and show a strong cross-interference of water vapor[9]. A solution to overcome these 

issues is the introduction of noble or transition metals in low concentration (0.1-2.0 wt%) into the 

sensing materials[12-15]. Additives can be present as dispersed nanoparticles (NPs), oxidized 

clusters, i.e. loadings, or as ions incorporated into the SnO2 lattice, i.e. dopants. Depending on their 

chemical state, distribution and dispersion, the metal NPs either influence the reception (chemical 

properties) and/or transduction (electronic properties) of the base material[11, 16]. When metallic 

NPs are present at the surface of the sensing materials, they are assumed to affect the chemical 

reaction of the target gas or gaseous reaction partners by activation of the gases at the NP surface 

and/or their subsequent spill-over to the SnO2 surface (spill-over mechanism). If the metals are 

present as oxidized clusters, they are in close contact with the SMOX, affecting the chemical and 
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electronic properties of the SnO2, e.g. the Fermi-level of SnO2 (Fermi-level control 

mechanism)[17-20]. 

A very good example for a dopant leading to spill-over in CO sensing is Au[21-23]. Generally, the 

Au loadings are found in metallic state on the surface of the SnO2 sensing material and do not 

change the surface or bulk electronic properties of the SnO2[13, 16, 21, 22, 24]. In previous works, 

an oxygen-related spill-over sensitization was found for Au NPs on SnO2[22,23]. Combined work 

function and resistance measurements show no electronic interaction of Au and SnO2[22] and High 

Energy Resolution Fluorescence Detection X-ray Absorption Spectroscopy (HERFD-XAS) and 

Diffuse Reflectance Infrared Fourier-Transformed Spectroscopy (DRIFTS) indicate additional 

oxygen species on the surface of Au-loaded SnO2[25].  

The second generally accepted sensitization mechanism is the Fermi-level control mechanism, 

which is expected for oxidized metal loading like in the case of Pt[19, 26] or Pd[27, 28] supported 

on SnO2. If deposited onto SnO2, Pd is present as clusters. Due to the close contact of the oxidized 

Pd with the SnO2 base material an electronic coupling between the oxidized Pd and SnO2 occurs. 

The strength of this coupling is determined by the stoichiometry of the noble metal loading, i.e. 

PdO. If PdO is partially reduced, the electronic coupling is altered and directly affects the charge 

transport in SnO2 (transduction) and therefore the sensors’ output signal[29].  

With the knowledge that sensing materials loaded with monometallic Au or Pd as dopants lead to 

spill-over and the Fermi-level control sensing mechanism, respectively, it is intriguing to examine 

the effect of the two metals being combined as an alloy. Recently, Tofighi et al.[30, 31] introduced 

an innovative method to produce monodisperse mono- and homogeneously mixed bimetallic 

nanocolloids in aqueous suspension in a one-step microfluidic synthesis process. The obtained 

NPs can be subsequently deposited onto metal oxide supports, i.e. materials attractive for catalysis 
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and gas sensing. The aim of this study is to trigger the sensing properties, e.g. selectivity, by 

preparing noble metal NPs including well-mixed AuPd nanoalloys using a microfluidic reactor, to 

study their response with respect to various reducing gases and the dominant mechanism involved.  

2. Materials and methods 

2.1. Materials 

HAuCl4·3H2O (Roth, 99.5% purity), K2PdCl4 (Alfa Aesar, 99.99% purity), polyvinylpyrrolidone 

(PVP, Sigma-Aldrich, average molecular weight 40 kDa), NaBH4 (Sigma-Aldrich, 99.99% 

purity), H2SO4 (Sigma-Aldrich, 95% solution) were used without purification. SnCl4 purchased 

from Merck was purified by distillation. 

2.2. Microfluidic synthesis of Au, Pd and AuPd nanoparticles 

The colloidal route for synthesis of ultrasmall Au, Pd and AuPd NPs using a microfluidic reactor 

was adopted from our previous reports[30, 31] and Hayashi et. al[32]. An aqueous solution of 

metal precursors (7.5 mM) with 666 mg PVP was prepared for all samples with nominal molar 

Au:Pd ratios of 1:0, 1:1 and 0:1. NaBH4 aqueous solution (37.5 mM) with 666 mg PVP was 

prepared as the reducing agent. These two solutions were poured separately into the corresponding 

vessels of the microfluidic setup (Fig. 1), which under 13 bar N2 gas pressure generates a 

continuous and pulsation-free flow of reactants at high flow rates (2.6 L h-1 achieving 2400 

Reynolds number). The pressurized reactants were injected into three cyclone micromixers for 

fast, efficient and homogeneous mixing in 2 ms (necessary for fast reduction reactions), and 

followed by a meandering microchannel for controlled nucleation and growth of NPs. Finally, the 

synthesized NPs were collected in a round-bottom flask placed in an ice/water bath and stirred for 

1 h. 
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Fig. 1 Microfluidic apparatus for colloidal nanoparticle synthesis in continuous flow with reactant 

vessels and microfluidic chip (F, T and P: flowmeter, temperature sensor and pressure transducer). 

The microfluidic chip made of Si-glass bonded wafer is fixed in a stainless steel support frame. 

2.3. SnO2 synthesis 

SnO2 with two different surface areas were synthesized by an aqueous sol-gel method with SnCl4 

as precursor[33]. The precipitated solid material was separated by centrifugation, washed several 

times and dried at 120 °C. Afterwards, the product was divided into two samples, one calcined at 

450 °C (SnO2-450) and the other at 1000 °C (SnO2-1000) for 8 h under air leading to surface areas 

of 32.7 and 3.6 m2 g-1, respectively. Spectroscopic investigations by DRIFTS[34, 35] and UV/vis-

DRS[36] and electronic studies of the conduction mechanisms[37, 38] for two base materials are 

reported elsewhere. The spectroscopic investigations reveal strong difference in the surface 

chemistry and optical band gap, while the electronic studies exhibit the same conduction 

mechanism for both materials, namely a depletion layer-controlled conduction involving grains 

with an unaffected bulk region. 

2.4. Preparation of Au, Pd and AuPd nanoparticles supported on SnO2 

The metal NP solution produced in the microreactor was added to a suspension of 1 g SnO2 in 80 

mL water acidified with 10 mL H2SO4 solution (0.58 M) while stirring at room temperature for 1 
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h. After adsorption of the metal colloids on the support, the suspension was centrifuged three times 

(4500 rpm, 5 min each) and washed with water until pH 5-6 was achieved. Subsequently, the 

material was dried at 80 °C overnight. Afterwards, the samples were calcined at 380 °C for 1 h. 

This method was used to prepare sensor materials with 0.1 wt% and 1.0 wt% Au, Pd and AuPd 

supported on SnO2-450 and SnO2-1000, respectively. 

2.5. Characterization of gas sensor materials 

2.5.1. Gas sensor preparation and gas sensing measurements 

Gas sensors were made by screen printing a paste, made from undoped or metal-doped SnO2 

powders and an organic binder (propanediol), on alumina substrates equipped with interdigitated 

Pt-electrodes and a backside heating meander (Pt)[39]. Gases were mixed using home-made gas 

dosing units with mass flow controllers, addition the diluted analyte gas to the carrier gas stream 

(synthetic air, 20.5 vol.% O2) with a total flow of 250 sccm. Humidity levels were dosed by using 

evaporators filled with deionized water. All gases were supplied by Westfalen AG Münster. When 

measuring in N2 atmospheres, the residual oxygen concentration in the gas flow was determined 

using a solid-state electrochemical oxygen sensor (Zirox SGM 400), which was placed 

downstream of the measured samples. The sensors were heated by applying a specific voltage and 

current to the backside heaters using a DC-powder supply (Agilent E3614A) and adjusting the 

exact values according to the sensor’s temperature calibration. All experiments were conducted at 

300 °C. The sensor response (resistance R) was measured using a digital multimeter (Agilent 

34410A). All experiments were performed by measuring one sensor at a time to avoid downstream 

effects. For reducing gases the sensor signal was calculated as the ratio (S = R0 / Rgas) of the 

baseline resistance (R0) and the resistance during gas exposure (Rgas). 

2.5.2. Electron microscopy  
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Electron microscopy was carried out using a scanning transmission electron microscope (STEM) 

with high angle annular dark-field detector (HAADF) and the composition of the samples was 

investigated by energy dispersive X-ray spectroscopy (EDX) using an EDAX S-UTW EDX 

detector in a FEI Titan 80-300 microscope operating at 300 kV. The gas sensor samples were 

directly dispersed on Cu grids coated with holey carbon film. Particle size statistics of the 

specimens were carried out on HAADF-STEM images by the ImageJ 1.49v software[40] assuming 

particles with ellipsoid shapes. 

2.5.3. Diffuse reflectance FTIR spectroscopy 

All FTIR spectra were recorded in diffuse reflectance geometry (DRIFTS) using a N2-purged 

Bruker Equinox55 FT-IR spectrometer equipped with a six-mirror optic (Harrick Praying Mantis). 

The sensors were placed in a homemade operando cell[41], which was installed in the six-mirror 

optic. All single channel spectra were recorded with a resolution of 4 cm-1 and 1024 scans per 

spectrum. Absorbance spectra were calculated using Lambert-Beer’s law, taking a single channel 

spectrum recorded in absence of CO, i.e. in dry or humid air, as reference[42]. Gas dosing, heating 

of sensors and electrical measurements were performed as described in 2.5.1. 

3. Results and discussion 

3.1. Gas sensing performances 

The prepared gas sensors were tested at 300 °C in dry and humid air (50% r.h. at 25 °C) and the 

results are shown in Fig. 2-4 and Fig. S1. The gas sensing properties of the noble metal loaded 

SnO2 samples differ from the corresponding pristine SnO2 materials (shown in blue).  

3.1.1. Au-loaded samples 

In the case of SnO2-1000, the presence of Au causes an enhancement of all sensor signals 

compared to the pristine material (Fig. 2a). By comparing the impact of water vapor on the sensing 



9 
 

properties of pristine and Au-loaded SnO2-1000, different observations are made. In case of CH4 

and ethanol similar trends are observed for both materials, namely a decrease in CH4 signals and 

a slight increase in the ethanol signals in humid air. The presence of Au NPs strongly decreases 

the influence of humidity on the CO signal, which now causes only a minor decrease in the CO 

signal in humid air. In case of toluene, Au-loading enhances the toluene signals in humid air instead 

of decreasing them, as observed for pristine SnO2-1000. These observations are in line with the 

expectations for the sensitization effect of Au NPs: The activation of oxygen by Au NPs and 

subsequent spill-over increase the reactivity of the SnO2 surface and thus enhances the gas 

reception on SnO2 with minor effects on the selectivity[22, 23]. A similar pattern is found for Au 

NPs deposited on SnO2-450 (Fig. 2b), but with two differences: Compared to pristine SnO2 in dry 

air, the sensor signals for methane and toluene are respectively decreased by a factor of 1.8 and 

2.5; probably due to the expected higher overall reactivity of the high-surface area SnO2-450 with 

1 wt.% Au loading. The effect of water vapor in the case of Au/SnO2-450 and pristine SnO2-450 

is different quantitatively in the case of ethanol and qualitatively in the case of CO. The ethanol 

sensing signals of Au-/SnO2-450 markedly increase, while for Au/SnO2-1000 this increase is less 

pronounced. In the case of CO sensing, the presence of water vapor increases the signals of 

Au/SnO2-450, while for Au/SnO2-1000 a small decrease is observed. Since water vapor has 

different effects on the CO and EtOH sensing properties of both base materials (Fig. S2) and H2O 

causes different chemical and electrical effects on both SnO2 surfaces[34, 43], the observations on 

the Au-loaded materials can be explained by different properties of the SnO2 surfaces. With respect 

to the responses to the four tested gases, the effect of Au NPs on both SnO2 materials follows a 

similar pattern (Fig. 2a,b), slightly affected by the properties of the base materials.  
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Fig. 2 Polar plot representation of the gas sensor signals for 50 ppm CO, 1000 ppm CH4, 10 ppm 

ethanol and 500 ppb toluene in dry air (dashed lines/empty symbols) and 50% r.h. (straight 

line/filled symbols) of pristine SnO2 (blue) and Au-loaded SnO2 (red) at 300 °C. The sensor signals 

for the material based on SnO2-1000 are shown in (a), the ones based on SnO2-450 in (b). 

3.1.2. Pd-loaded samples 

Compared to the Au-loaded SnO2 sample, loading SnO2 with Pd NPs (Fig. 3) has a different effect 

on the gas response patterns of the sensing materials. In the case of CO, both Pd-loaded materials 

show low sensor signals in dry air, which are - unlike those of pristine SnO2 - increased in the 

presence of humidity. This behavior is well-known for noble metal oxide loaded SMOX. In the 

case of Pt-loaded SnO2, it is explained by the interference of H2O with the surface reduction by 

CO as well as the re-oxidation by O2. In dry air neither reduction nor re-oxidation is hindered, and 

efficient re-oxidation prevents changes in the PtOx composition, which would cause sensor signals. 

In humid air water vapor inhibits both reactions, but the inhibiting effect is stronger for the re-

oxidation and, thus, the sensor signals increase compared to dry air, while the catalytic activity of 

the material decreases[26]. A strong difference between the CH4 gas response of Au/SnO2 and 
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Pd/SnO2 is observed. In dry air Pd/SnO2 shows strong sensor signals for CH4, which are decreased 

by the presence of water vapor, but remain rather high compared to the other sensing materials. 

Assuming that the activation of the less reactive CH4 is limiting the methane sensing, a decrease 

in the CH4 oxidation activity of PdO under humid conditions would explain the effect of water 

vapor on the CH4 signals. And indeed, for PdO-based catalysts used for CH4 oxidation a reduced 

activity is found under humid conditions[44]. Differences in ethanol sensing are also observed: 

Pd/SnO2-1000 shows a slight increase of the ethanol signals in the presence of water vapor, while 

Pd/SnO2-450 shows a slight decrease. These differences may arise from the different surface areas 

and Pd concentrations in the samples, or in case of ethanol sensing from an interaction with the 

support. Both Pd-loaded samples show weak response to toluene and are not significantly affected 

by water vapor. 

 

Fig. 3 Polar plot representation of the gas sensor signals for 50 ppm CO, 1000 ppm CH4, 10 ppm 

ethanol and 500 ppb toluene in dry air (dashed lines/empty symbols) and 50% r.h. (straight 

line/filled symbols) of pristine SnO2 (blue) and Pd-loaded SnO2 (red) at 300 °C. The sensor signals 

for the material based on SnO2-1000 are shown in (a), the ones based on SnO2-450 in (b). 



12 
 

3.1.3. AuPd-loaded samples 

AuPd NPs on SnO2 (Fig. 4) show once again a different behavior compared to their monometallic 

systems. Compared to the undoped SnO2, the AuPd nanoalloy shows lower sensor signals, with a 

different response pattern to the four gases, and a different susceptibility to water vapor. In the 

case of both pristine SnO2 materials, water vapor causes a decrease in the CO signals, while the 

AuPd/SnO2 materials provide increased signals. For ethanol the opposite effect compared to the 

Pd/SnO2 samples is observed. The AuPd/SnO2 materials show a strong decrease in the ethanol 

sensor signals in the presence of water vapor. Unlike Pd/SnO2, AuPd/SnO2 samples do not show 

a pronounced enhancement of the CH4 sensor signals. The response to toluene remains low. The 

sensing properties of the AuPd NPs are more similar to those of Pd NPs, but show differences in 

the selectivity towards CH4 and the effect of water vapor on the ethanol signals.  

 

Fig. 4 Polar plot representation of the gas sensor signals for 50 ppm CO, 1000 ppm CH4, 10 ppm 

ethanol and 500 ppb toluene in dry air (dashed lines/empty symbols) and 50% r.h. (straight 

line/filled symbols) of pristine SnO2 (blue) and AuPd-loaded SnO2 (red) at 300 °C. The sensor 

signals for the material based on SnO2-1000 are shown in (a), the ones based on SnO2-450 in (b). 
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On both SnO2 materials, Pd and AuPd NPs cause response patterns less dependent on the support 

material, but rather on the noble metal loading. This observation suggests that the gas reception is 

controlled by the AuPd or Pd NPs, respectively, i.e. the oxidation of the reducible analyte gases 

dominantly takes place on the noble metal NPs and the charge carrier concentration in SnO2 is 

changed due to the electronic coupling of SnO2 and the noble metal NPs (Fermi-level control). 

Thus, in the case of a Fermi-level control sensitization, the gas sensing properties, e.g. the 

selectivity, are defined by the catalytic properties of the noble metal loading, as the gas reception 

is shifted to the noble metal NPs. In the case of Pd (Fig. 3) and AuPd (Fig. 4) supported on SnO2, 

the strong dependency of the sensing properties on the noble metal loadings shows that a Fermi-

level controlled sensitization mechanism dominates, i.e. a strong electronic interaction of the noble 

metal clusters and SnO2, rather than an activation of the SnO2 surface, e.g. by a spill-over 

mechanism as in the case of Au clusters. In case of a spill-over sensitization by gold (Fig. 2), the 

nature of the support material plays an important role. When comparing the noble metal NPs 

supported on two differently prepared SnO2 materials (with two different surface areas) with each 

other or with their corresponding pristine SnO2 base materials, differences in the magnitude of the 

sensor signals maybe explained with differences in the concentration of reactive sites, which 

depends on noble metal loadings and the surface area of the SnO2. Despite the strong differences 

in the magnitude of the sensor signals, it is important to note that all three noble metal loadings 

cause different response patterns to the test gases, i.e. have a different effect on the selectivity of 

the gas sensing materials. This is an interesting finding, demonstrating that it is possible to 

influence the selectivity of gas sensing materials by tuning the composition of the noble metal 

component. 
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3.2. Mechanistic investigations 

The impact of additives in SMOX gas sensing materials is influenced by various factors; besides 

their chemical state, i.e. oxide or metal, and structure, their surface concentration has a large impact 

on the gas sensing properties. Both base materials have different material properties[34-36], but 

also different grain sizes[33]. In order to achieve a similar surface loading, the absolute loadings 

were adjusted by a factor similar to the difference in specific surface area. This allows us to discuss 

the impact of different additives as well as the role of the supporting SMOX properties on the basis 

of a similar additive surface concentration. 

3.2.1. Structural analysis 

The morphology and size distributions of the NPs from as prepared gas sensors were analyzed by 

STEM (Fig. 5 and S3). Size distributions were determined by measuring the diameters of several 

hundreds of NPs (Fig. S3). Samples with low noble metal loadings on supports with low surface 

area, i.e. 0.1 wt.% Au(Pd)/SnO2-1000, exhibited small average diameters (5.8 and 6.6 nm, 

respectively). Moreover, the alloyed AuPd NPs show a smaller NP size compared to Au NPs. This 

effect was also reported earlier in our previous work[30] for such monometallic and bimetallic 

NPs supported on TiO2; extended-X-ray absorption fine structure (EXAFS) showed that the 

surface of AuPd NPs after deposition on support material and drying was mostly dominated by 

segregated Palladium. The presence of both Au and Pd in one single nanoparticle of AuPd 

nanoalloy is also shown in STEM-EDX spectrum (Fig. S4). Due to low contrast in STEM image 

between oxidized Pd and the SnO2 support in the calcined Pd/SnO2 sample, the Pd NPs could not 

be clearly detected by electron microscopy (Fig. 5c,f), however the presence of Pd on SnO2 was 

confirmed by EDX spectroscopy (Fig. S5 and S6). Previous studies on Pd-loaded SnO2 gas sensing 
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materials revealed that Pd is present as PdO on the SnO2 surface[43, 45] and remains oxidized 

during sensor operation[43, 46].  

 

Fig. 5 STEM images of 0.1 wt.% (a) Au, (b) AuPd and (c) Pd supported on SnO2-1000, and 1.0 

wt.% (d) Au, (e) AuPd and (f) Pd supported on SnO2-450 after gas sensing test at 300 °C. Red 

arrows indicate representatives of noble metal NPs. 

The structural analysis by STEM and the analogy to NPs supported on SnO2 suggest that for all 

doped materials the noble metals form clusters on the SnO2 surface. To further understand the 

sensitization mechanism, the electrical and chemical impact of the dopants was studied by 
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estimating the initial surface band bending in an inert atmosphere (pure N2) and by operando 

DRIFTS, respectively. 

3.2.2. Electronic effects of the loadings 

Sensitization by a Fermi-level control mechanism requires an electronic coupling between the 

noble metal oxide and the supporting SnO2 support. The electronic coupling will cause an initial 

band bending independent on adsorbed gases, i.e. also present in an inert atmosphere. Thus, by 

comparing the resistances of the noble metal loaded materials with the corresponding values for 

pristine SnO2 allows estimating the initial band bending using the following equation[26, 47], 

where eVS is the initial band bending, kBT the thermal energy, RL is the resistance of the noble 

metal loaded samples in pure N2, and RP the resistance of pristine SnO2 in pure N2: 

𝑒𝑉𝑆 = 𝑘𝐵𝑇 ∙ 𝑙𝑛 (
𝑅𝐿

𝑅𝑃
) 

The results of these calculations are summarized in Table 1. In addition to the initial band bending 

and the resistance in nitrogen, the residual oxygen content in the nitrogen atmosphere is shown. 

The high initial band bending for the samples loaded with Pd or AuPd NPs indicates a strong 

electronic coupling of SnO2 and the NPs, while for the samples loaded with Au NPs a lower initial 

band bending is found. The low initial band bending for Au NPs is comparable with the expected 

error of this calculation, namely the thermal energy at 300 °C (49 meV), and can be explained by 

an increased adsorption of residual oxygen related to the expected O2 spill-over by Au NPs. The 

calculated initial band bending for the noble metal loaded samples indicates that there is only an 

electronic coupling for the materials loaded with Pd or AuPd NPs, while in the case of Au NPs 

there is no strong electronic interaction with the supporting SnO2 support. 
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Table 1 Sensor resistances in an inert atmosphere and the calculated initial band bending due to 

the noble metal dopants. Further details are given in the text. 

Sample Residual O2 [ppm] Resistance [Ω] Band bending [meV] 

SnO2-1000    

undoped 1.7 1224 - 

0.1 wt.% Au 1.7 2439 34 

0.1 wt.% AuPd 1.7 24007 147 

0.1 wt.% Pd 1.7 34100 164 

SnO2-450    

undoped 2.4 145 - 

1.0 wt.% Au 2.4 647 74 

1.0 wt.% AuPd 2.4 22505 249 

1.0 wt.% Pd 2.4 36326 273 

 

3.2.3. Chemical effects of the loadings 

Changes in surface chemistry due to loading with noble metal NPs were investigated by operando 

DRIFTS spectroscopy using CO as reducing gas. On pristine SnO2, the detection of CO consumes 

surface oxygen, causing a decrease in the Sn-O overtone vibrations between 1370 and 1330 cm-1 

on both SnO2 materials[34]. On SnO2-1000 additional Sn-O overtone bands are reported at 1271, 

1205, 1159 and 1059 cm-1[34]. The decrease in surface oxygen concentration causes a subsequent 

decrease in surface hydroxyl groups, which are in equilibrium with surface oxygen[34, 42]. The 

hydroxyl groups show several sharp O-H stretch vibrations between 3750 and 3450 cm-1, one 

broad band of interacting OH groups (3600 to 2500 cm-1) and the corresponding Sn-OH 

deformation vibrations (mainly below 1000 cm-1)[34]. No adsorbed carbonyls are observed under 

dry or humid gas sensing conditions (50 ppm CO and 20.5 vol.% O2). The DRIFTS spectra of all 

SnO2-1000 materials during CO sensing are shown in Fig. 6. In dry air (Fig. 6, top), undoped SnO2 

bands related to surface oxygen and hydroxyl groups decrease as described above. In the case of 

the sample doped with Au NPs, a similar situation occurs. This indicates that gas reception takes 
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place on the SnO2 surface, while for the AuPd and Pd NPs loaded samples no changes in the SnO2 

surface are observed. For the latter case, this suggests that the gas reception does no longer take 

place on the SnO2 surface, i.e. it is shifted to the AuPd or Pd NPs. In 10% r.h. (Fig. 6, bottom), the 

strongest change is observed for undoped SnO2, which shows a lower impact on the SnO2 surface 

species due to CO exposure. This correlates with the decreased CO signals in humid air (see Fig. 

2-4) and is explained by the previously reported competition of CO and H2O for the same surface 

oxygen species[34]. For the samples loaded with Au NPs, humidity does not cause a decrease, i.e. 

the material remains reactive in the presence of water vapor. This observation explains the low 

impact of water vapor on the CO sensor signals in humid air (Fig. 2-4). For the samples loaded 

with AuPd or Pd NPs, one observes a weak increase of surface oxygen and hydroxyl groups on 

SnO2. This can be explained by a decreased reactivity of the noble metal NPs in humid air: As 

recently reported for Pt-loaded SnO2, water can inhibit re-oxidation of the noble metal clusters and 

CO oxidation consumes oxygen from the SnO2 surface[26]. In case of Pt loaded SnO2, the PtOx 

sensitized SnO2 by a Fermi-level control mechanism and a decreased re-oxidation of the PtOx 

clusters during sensing in humid air caused strong changes in the composition of the PtOx clusters 

and, thus, a strong effect on the electronic interface of PtOx and SnO2, i.e. a stronger change in 

resistance. The DRIFT spectra of the AuPd and Pd loaded sample suggests that a similar situation 

as for Pt loaded SnO2 occurs. 

The samples based on SnO2-450 show the same behavior, i.e. an increased reactivity of the SnO2 

surface for the samples loaded with Au NPs and a decreased interaction of CO with the SnO2 

surface in case of the samples loaded with AuPd or Pd NPs. The decreased interaction of CO with 

the SnO2 surface indicates that the gas reception is shifted to the noble metal NPs. However, in 

dry air an increase in rooted hydroxyl groups (3600 to 3400 cm-1), i.e. OH groups coordinated with 
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two or three Sn ions[41], on the noble metal samples due to CO exposure is observed. This increase 

is most likely related to very small changes in the residual humidity in the gas flow due to mixing 

flows from two different channels and gas bottles. 

3.3. Summary 

Independent of the base materials, the gas sensing experiments (Fig. 2-4) along with the estimated 

values for initial band bending (Table 1) and operando DRIFTS results (Fig. 6 and Fig. S7) reveal 

similar effects for each noble metal loading:  

• In case of Au NPs, there is no initial band bending due to the Au loading, i.e. there is no 

electronic coupling of Au and SnO2. DRIFTS revealed, that Au enhances the reactivity of the SnO2 

surface. In line with previous works[22, 23], these findings support an oxygen related spill-over 

sensitization for Au NPs.   

• In case of AuPd and Pd NPs a strong initial band bending is found, i.e. there is a strong 

electronic interaction between SnO2 and AuPd or Pd, respectively. The DRIFTS spectra of both 

materials show that the reaction of CO is no longer taking place on the SnO2 surface and, thus, is 

shifted to the noble metal clusters. These findings suggest a sensitization by a Fermi-level control 

mechanism, as recently reported for Pt loaded SnO2 or Rh loaded WO3[26, 47]. 

The similarity between the AuPd and Pd doped sample suggests that a Fermi-level control 

mechanism determines the sensing properties of the alloy material. The absence of a spill-over 

sensitization is related to the deactivation of the oxide support by an initial band bending, e.g. as 

recently reported for Rh loaded WO3[47]. Thus, it is concluded, that in case of a sensitization by 

a Fermi-level control mechanism, a spill-over sensitization is absent or does not contribute to the 

gas reception. In the case of the Fermi-level control sensitization, the sensor signals depend on 



20 
 

changes in the NP composition determined by the interplay of reduction and (re-) oxidation of the 

catalytically active sites on the NPs under certain conditions[26]. 

Fig. 6 Operando DRIFT spectra of SnO2-1000 materials during sensing of 50 ppm CO in dry air 

(top) and in 10% r.h. (bottom). The spectral regions with the O-H stretch vibrations and the 

fingerprint region are respectively shown on the left and right side. All sensors were operated at 

300 °C. 

4. Conclusions and outlook 

Colloidal monometallic Au and Pd NPs as well as AuPd nanoalloys were synthesized using a 

microfluidic reactor with efficient micromixers and then deposited on SnO2 as support. The gas 

sensing measurements at 300 °C and especially the comparison of pure Au, AuPd alloy and pure 
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Pd NPs supported on different SnO2 substrates demonstrate that the gas sensing properties can be 

strongly influenced by the noble metal loading and its composition. The investigations on the 

sensitization mechanism of the materials revealed that for Au oxygen spill-over improves the 

sensing properties of the SnO2 surfaces, whereas for the samples with Pd-containing loadings, i.e. 

AuPd or Pd NPs, a Fermi-level control sensitization mechanism is found to determine the sensing 

properties of the materials. Moreover, the catalytic reactions over the PdOx-particles may strongly 

alter the sensing properties, e.g. for CO. The AuPd nanoalloy differs from the monometallic noble 

metal loadings and thus, systematically testing further alloy compositions is a promising approach 

to improve the selectivity of gas sensing materials. In addition to the alloy composition, further 

optimization of the noble metal concentration, support materials and operation temperature will 

enhance the potential of this promising type of noble metal NP based sensors.  

Supplementary data: 

Supplementary data, including additional comparisons of the gas sensing performance, further 

HAADF-STEM and STEM-EDX analysis of the materials and DRIFT spectra of SnO2-450, can 

be found in the online version. 
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