1,513 research outputs found

    The application of time-series MODIS NDVI profiles for the acquisition of crop information across Afghanistan

    Get PDF
    We investigated and developed a prototype crop information system integrating 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data with other available remotely sensed imagery, field data, and knowledge as part of a wider project monitoring opium and cereal crops. NDVI profiles exhibited large geographical variations in timing, height, shape, and number of peaks, with characteristics determined by underlying crop mixes, growth cycles, and agricultural practices. MODIS pixels were typically bigger than the field sizes, but profiles were indicators of crop phenology as the growth stages of the main first-cycle crops (opium poppy and cereals) were in phase. Profiles were used to investigate crop rotations, areas of newly exploited agriculture, localized variation in land management, and environmental factors such as water availability and disease. Near-real-time tracking of the current years’ profile provided forecasts of crop growth stages, early warning of drought, and mapping of affected areas. Derived data products and bulletins provided timely crop information to the UK Government and other international stakeholders to assist the development of counter-narcotic policy, plan activity, and measure progress. Results show the potential for transferring these techniques to other agricultural systems

    Survey and monitoring of opium poppy and wheat in Afghanistan: 2003-2009

    Get PDF
    An integrated application of remote-sensing technology was devised and applied in Afghanistan during 2003–2009 providing critical information on cereal and poppy cultivation and poppy eradication. The results influenced UK and international policy and counter-narcotics actions in Afghanistan

    Matrix factorizations for quantum complete intersections

    Full text link
    We introduce twisted matrix factorizations for quantum complete intersections of codimension two. For such an algebra, we show that in a given dimension, almost all the indecomposable modules with bounded minimal projective resolutions correspond to such matrix factorizations.Comment: 13 page

    Four-Hundred-and-Ninety-Million-Year Record of Bacteriogenic Iron Oxide Precipitation at Sea-Floor Hydrothermal Vents

    Get PDF
    Fe oxide deposits are commonly found at hydrothermal vent sites at mid-ocean ridge and back-arc sea floor spreading centers, seamounts associated with these spreading centers, and intra-plate seamounts, and can cover extensive areas of the seafloor. These deposits can be attributed to several abiogenic processes and commonly contain micron-scale filamentous textures. Some filaments are cylindrical casts of Fe oxyhydroxides formed around bacterial cells and are thus unquestionably biogenic. The filaments have distinctive morphologies very like structures formed by neutrophilic Fe oxidizing bacteria. It is becoming increasingly apparent that Fe oxidizing bacteria have a significant role in the formation of Fe oxide deposits at marine hydrothermal vents. The presence of Fe oxide filaments in Fe oxides is thus of great potential as a biomarker for Fe oxidizing bacteria in modern and ancient marine hydrothermal vent deposits. The ancient analogues of modern deep-sea hydrothermal Fe oxide deposits are jaspers. A number of jaspers, ranging in age from the early Ordovician to late Eocene, contain abundant Fe oxide filamentous textures with a wide variety of morphologies. Some of these filaments are like structures formed by modern Fe oxidizing bacteria. Together with new data from the modern TAG site, we show that there is direct evidence for bacteriogenic Fe oxide precipitation at marine hydrothermal vent sites for at least the last 490 Ma of the Phanerozoic

    Effects of short-term treatment with atorvastatin in smokers with asthma - a randomized controlled trial

    Get PDF
    <b>Background</b> The immune modulating properties of statins may benefit smokers with asthma. We tested the hypothesis that short-term treatment with atorvastatin improves lung function or indices of asthma control in smokers with asthma.<p></p> <b>Methods</b> Seventy one smokers with mild to moderate asthma were recruited to a randomized double-blind parallel group trial comparing treatment with atorvastatin (40 mg per day) versus placebo for 4 weeks. After 4 weeks treatment inhaled beclometasone (400 ug per day) was added to both treatment arms for a further 4 weeks. The primary outcome was morning peak expiratory flow after 4 weeks treatment. Secondary outcome measures included indices of asthma control and airway inflammation.<p></p> <b>Results</b> At 4 weeks, there was no improvement in the atorvastatin group compared to the placebo group in morning peak expiratory flow [-10.67 L/min, 95% CI -38.70 to 17.37, p=0.449], but there was an improvement with atorvastatin in asthma quality of life score [0.52, 95% CI 0.17 to 0.87 p=0.005]. There was no significant improvement with atorvastatin and inhaled beclometasone compared to inhaled beclometasone alone in outcome measures at 8 weeks.<p></p> <b>Conclusions</b> Short-term treatment with atorvastatin does not alter lung function but may improve asthma quality of life in smokers with mild to moderate asthma. Clinicaltrials.gov identifier: NCT0046382

    Self-organized dynamics and the transition to turbulence of confined active nematics

    Full text link
    We study how confinement transforms the chaotic dynamics of bulk microtubule-based active nematics into regular spatiotemporal patterns. For weak confinements, multiple continuously nucleating and annihilating topological defects self-organize into persistent circular flows of either handedness. Increasing confinement strength leads to the emergence of distinct dynamics, in which the slow periodic nucleation of topological defects at the boundary is superimposed onto a fast procession of a pair of defects. A defect pair migrates towards the confinement core over multiple rotation cycles, while the associated nematic director field evolves from a distinct double spiral towards a nearly circularly symmetric configuration. The collapse of the defect orbits is punctuated by another boundary-localized nucleation event, that sets up long-term doubly-periodic dynamics. Comparing experimental data to a theoretical model of an active nematic, reveals that theory captures the fast procession of a pair of +12+\frac{1}{2} defects, but not the slow spiral transformation nor the periodic nucleation of defect pairs. Theory also fails to predict the emergence of circular flows in the weak confinement regime. The developed confinement methods are generalized to more complex geometries, providing a robust microfluidic platform for rationally engineering two-dimensional autonomous flows

    Breaking axi-symmetry in stenotic flow lowers the critical transition Reynolds number

    Get PDF
    Flow through a sinuous stenosis with varying degrees of non-axisymmetric shape variations and at Reynolds number ranging from 250 to 750 is investigated using direct numerical simulation (DNS) and global linear stability analysis. At low Reynolds numbers (Re < 390), the flow is always steady and symmetric for an axisymmetric geometry. Two steady state solutions are obtained when the Reynolds number is increased: a symmetric steady state and an eccentric, non-axisymmetric steady state. Either one can be obtained in the DNS depending on the initial condition. A linear global stability analysis around the symmetric and non-axisymmetric steady state reveals that both flows are linearly stable for the same Reynolds number, showing that the first bifurcation from symmetry to antisymmetry is subcritical. When the Reynolds number is increased further, the symmetric state becomes linearly unstable to an eigenmode, which drives the flow towards the nonaxisymmetric state. The symmetric state remains steady up to Re = 713, while the non-axisymmetric state displays regimes of periodic oscillations for Re ≥ 417 and intermittency for Re & 525. Further, an offset of the stenosis throat is introduced through the eccentricity parameter E. When eccentricity is increased from zero to only 0.3% of the pipe diameter, the bifurcation Reynolds number decreases by more than 50%, showing that it is highly sensitive to non-axisymmetric shape variations. Based on the resulting bifurcation map and its dependency on E, we resolve the discrepancies between previous experimental and computational studies. We also present excellent agreement between our numerical results and previous experimental resultsThis is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.493453

    Non-normality and nonlinearity in thermoacoustic instabilities

    Get PDF
    Analysis of thermoacoustic instabilities were dominated by modal (eigenvalue) analysis for many decades. Recent progress in nonmodal stability analysis allows us to study the problem from a different perspective, by quantitatively describing the short-term behavior of disturbances. The short-term evolution has a bearing on subcritical transition to instability, known popularly as triggering instability in thermoacoustic parlance. We provide a review of the recent developments in the context of triggering instability. A tutorial for nonmodal stability analysis is provided. The applicability of the tools from nonmodal stability analysis are demonstrated with the help of a simple model of a Rjike tube. The article closes with a brief description of how to characterize bifurcations in thermoacoustic systems
    • …
    corecore