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Flow through a sinuous stenosis with varying degrees of non-axisymmetric shape
variations and at Reynolds number ranging from 250 to 750 is investigated us-
ing direct numerical simulation (DNS) and global linear stability analysis. At low
Reynolds numbers (Re < 390), the flow is always steady and symmetric for an ax-
isymmetric geometry. Two steady state solutions are obtained when the Reynolds
number is increased: a symmetric steady state and an eccentric, non-axisymmetric
steady state. Either one can be obtained in the DNS depending on the initial condi-
tion. A linear global stability analysis around the symmetric and non-axisymmetric
steady state reveals that both flows are linearly stable for the same Reynolds num-
ber, showing that the first bifurcation from symmetry to antisymmetry is sub-
critical. When the Reynolds number is increased further, the symmetric state
becomes linearly unstable to an eigenmode, which drives the flow towards the non-
axisymmetric state. The symmetric state remains steady up to Re = 713, while
the non-axisymmetric state displays regimes of periodic oscillations for Re ≥ 417
and intermittency for Re & 525. Further, an offset of the stenosis throat is intro-
duced through the eccentricity parameter E. When eccentricity is increased from
zero to only 0.3% of the pipe diameter, the bifurcation Reynolds number decreases
by more than 50%, showing that it is highly sensitive to non-axisymmetric shape
variations. Based on the resulting bifurcation map and its dependency on E, we re-
solve the discrepancies between previous experimental and computational studies.
We also present excellent agreement between our numerical results and previous
experimental results.

I. INTRODUCTION

Arteriosclerosis is the narrowing of arteries caused by buildup of plaque along the inner
artery wall.1 This narrowing and re-expansion of the artery wall is known generally as a
stenosis, and can be modelled as a converging-diverging pipe. A stenosis predisposes the
artery to thrombosis (blood clotting) and eventually, when the blood clot detaches from
the artery wall, to infarction.2 This often causes a heart attack, a stroke, or other tissue
damage.2
It is important to know whether or not a stenosis is likely to cause thrombosis. This is

because surgical intervention itself can cause thrombosis and be more dangerous than the
stenosis it is intended to cure.3 The medical community, therefore, would like to be able to
categorize stenoses into those that are likely to cause thrombosis and those that are not.
This will only be possible with a rigorous understanding of the flow within a stenosis.4 For
example, low and oscillatory wall shear stress play a key role in plaque formation on artery
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Study Re E Mesh resolution Domain size
Vétel et al. (2008) 116-1160 0
Ahmed & Giddens (1983) 500,1000 0
Griffith et al. (2008) 50-2500 0 N/A 81D
Sherwin & Blackburn (2005) 400-800 0 38000 50D
Griffith et al. (2013) 1-400 0-5% 200000 31D
Varghese et al. (2007) 500,1000 0,5% 1200000 N/A
Present study 250-750 0-5% 3646080 31D

FIG. 1: Overview of previous studies’ investigated regions in (Re,E) space, projected at a
blockage ratio of 75%, with numerical implementation parameters. Studies in italics are

experimental. The mesh resolution is given in approximate number of nodes. Sherwin and
Blackburn9 did a 2D study, hence the relatively low number of gridpoints.

walls5 and therefore in the triggering and growth of stenoses. These shear stresses arise as
a direct consequence of the flow within the stenosis, in particular its stability, which is the
subject of this paper.
Previous studies of stenotic flows have reported steady flow at low Reynolds numbers

and transition to unsteady flow as the Reynolds number increases. The reported critical
transition Reynolds number varies greatly, however, between different studies. Ahmed and
Giddens6 conducted an experimental investigation of an axisymmetric stenosis in which
the radius varied sinusoidally over a length of two pipe diameters, with blockage ratio from
25% to 75% and Re = 500 and 1000. At 75% blockage ratio, non-stationary flow was first
observed at Re = 500. Vétel et al.7 used a slightly different stenosis model in the shape of
two intersecting circular arcs, also with two pipe diameters length and 75% blockage ratio.
The Reynolds number ranged from 116 to 1160, and non-stationary flow was observed for
Re > 400. Griffith et al.8 (2008) did a joint numerical-experimental study of the effect of
blockage ratio, from 20% to 95%, and Reynolds numbers from 50 to 2500 using a stenosis
model with a semi-circular axial profile. Experimental results showed non-stationary flow
at Re ≈ 400 for a stenosis blockage ratio of 75%. Sherwin and Blackburn9 performed a
numerical study implementing the same geometry as that used by Ahmed and Giddens6

at a blockage ratio of 75%, using DNS and global linear stability analysis in the Reynolds
number regime 400 ≤ Re ≤ 800. They showed that the flow is stationary, symmetric and
stable up to a critical Reynolds number of Rec = 722, at which point the symmetric flow
becomes unstable. Turbulent flow was observed for Re > 688 in a secondary solution branch
where the jet was skewed through a Coanda-type wall attachment.10 Varghese, Frankel, and
Fischer11 performed DNS-simulations for Re = 500, 1000 and E = 0, 5%. Non-stationary
flow was only observed at Re = 1000 and E = 5%. Figure 1 gives an overview of previous
studies and their investigated regions in (Re,E)-space along with numerical implementation
parameters.

The reported flow dynamics differ in these studies. According to experimental re-
sults by Vétel et al.7, the flow is nearly symmetric for Re ≤ 302, but by Re = 348 the
flow has undergone a Coanda-type wall attachment to one side and is strongly skewed.
Varghese, Frankel, and Fischer11, on the contrary, reported a symmetric jet for E = 0 at
Re = 500 and 1000, the jet being skewed only at E = 5% and Re = 500. For Re > 440,
Vétel et al.7 reported intermittent flow with alternating turbulent and laminar phases.
As the Reynolds number increased, the turbulent phases became longer in time and the
post-stenotic turbulent region moved further upstream until turbulent phases took over at
Re ≈ 922 and intermittency was gone. This intermittency pattern was also reported by
Sherwin and Blackburn9, but at higher Reynolds numbers, Re > 580. The non-stationary
flow in Ahmed and Giddens6 was reported as discrete frequency oscillations at Re = 500
and full turbulence was observed in the post-stenotic region at Re = 1000. Griffith et al.8

(2008) observed Kevin-Helmholtz waves in the post-stenotic recirculation region, growing
in amplitude while being convected downstream, thus demonstrating convective instability.
Griffith et al.12 (2013) performed a numerical DNS study and showed that the discrep-
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ancy in the steady flow regime between the experimental results reported by Vétel et al.7

and the numerical investigations can be accredited to non-axisymmetric changes in the
stenosis’ shape, inherent in all experimental systems. However, the investigated Reynolds
number ranged from Re = 1 to 400 and thus did not cover the non-stationary flow regime,
nor was any stability analysis performed. Sherwin and Blackburn9 did notice a subcritical
bifurcation, but the study was limited to a perfectly axisymmetric geometry. Thus the
hydrodynamic stability’s sensitivity to non-axisymmetric shape variations remains unex-
plored. This paper aims to bridge that gap and to quantify the effect of non-axisymmetric
shape variations to see whether or not this is the source of discrepancy in numerics and ex-
periments, in the stationary as well as the non-stationary regime. To accomplish this, DNS
and global linear stability analysis are used. Modal stability analyses for a range of different
eccentricities are performed, to see whether the leading eigenmode becomes unstable at
lower Reynolds numbers for non-axisymmetric geometries. If a modal instability is observed
at a certain Reynolds number for slightly non-axisymmetric geometries, but not for sym-
metric ones, this could explain why the critical Reynolds numbers are different in numerical
studies (symmetric geometries) and experimental studies. The shape of the bifurcation,
i.e. to what degree it is subcritical, is evaluated by varying the initial conditions in the DNS.

II. METHODS

Problem setup

FIG. 2: Schematic of the stenosis geometry under investigation, adapted from Griffiths et
al. (2013).

The simplified stenosis geometries are adopted from Varghese, Frankel, and Fischer (2007)
and shown in Figure 2 . The origin of the coordinate system is at the centerline of the
throat. The axial coordinate is z and the coordinate in the direction of the eccentricity
(labelled the cross-stream coordinate) is y. In the following, the star ∗ denotes dimensional
coordinates, u is the velocity vector, and p is the pressure.
The smallest diameter at the throat of the constriction is 0.5D, giving a ratio of 0.25

between the minimum and maximum cross-sectional areas. This blockage ratio of 75%
represents the threshold of clinical significance and visibility using present technology.7 The
radius can be written as:

r∗(z∗) = 0.5D[1− 0.25(1 + cos(2πz∗/L)] (1)

throughout the stenosis, i.e., for −D < z∗ < D. The shape asymmetry consists of an offset
of the stenosis walls in the y-direction, known as eccentricity. The eccentricity has a sinuous
axial profile, defined as:

Ez(z∗) = 0.5ED[1 + cos(2πz∗/L)], (2)
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so that the eccentricity is zero at the boundaries of the stenosis, |z∗| = D, and reaches its
peak at the throat where it equals E. The wall coordinates in the eccentric stenosis model
is:

y∗ = r∗ cos(φ) + Ez, x∗ = r∗ sin(φ), φ : 0→ 2π.

The inlet is placed 6D upstream of the throat, and a Poiseuille inlet velocity profile is
imposed: U∗ = 2Ũ

[
1− 4r∗2/D2], where Ũ is the average inlet velocity. In the remainder

of this paper, nondimensionalized coordinates will be used; U = U∗/Ũ and (x, y, z) =
(x∗, y∗, z∗)/D, t = t∗Ũ/D. The Reynolds number is thus defined as Re = ŨD/ν. The
problem is defined by two variables: the eccentricity E and the Reynolds number Re. Using
the diameter of the common carotid artery, Bharadvaj, Mabon, and Giddens13 showed that
a representative, time-averaged, Reynolds number for this blood vessel is R̃e = 380. It was
also noted, however, that because blood flow is pulsatile, the peak Reynolds number can be
as high as 1200. Most studies on stenotic flows have been in the range of 100 < Re < 1000.
In this study the investigated Reynolds number range is from 250 to 750, and the eccentricity
is from 0 to 5%.

Governing equations

The governing equations for the direct numerical simulations (DNS) are the incompress-
ible Navier–Stokes equations with no-slip boundary conditions at the walls and a zero stress
boundary condition at the outlet. In global stability analysis, the velocity field (and simi-
larly the pressure) is decomposed as:

u = U(r, z) + û(r, φ, z) expσt, (3)

where U is the axisymmetric base flow, and the second term is based on a 3D global mode
ansatz for the disturbance. This leads to the following equation system to be solved:

σû + û · ∇Ub + Ub · ∇û = −∇p̂+ 1
Re
∇2û (4)

∇ · û = 0.

where (û, p̂) is the spatial shape of the global mode with the complex eigenvalue σ = σr +σi.
Modes with positive σr are unstable. In our case, the unstable modes have σi = 0 (zero
frequency).

Numerical Implementation

The open-source software Nek500014 is used in this study for DNS-simulations. A three-
dimensional mesh consisting of 8000 hexahedral elements is used for Re < 400. Nodes
in each element are distributed according to Gauss-Lobatto-Legendre quadrature in every
spatial dimension. The polynomial order is N = 5 in each element. The mesh consists
of 80 two dimensional cells in the xy-plane (Figure 3a) with 100 elements in the axial
direction, creating the 8000 element mesh with 1728000 nodes. The domain extends 6D
upstream of the stenosis throat and 25D downstream. Since the domain boundaries are
transformed analytically from a straight pipe to the given eccentric shape before the domain
is discretized, the geometric precision of the pipe wall is to the order of double precision,
i.e., O(10−16) in non-dimensionalized terms. The smallest investigated eccentricity is 0.02%,
thus well above the precision level set by numerical approximation.
A mesh convergence study has been performed. For Re = 350, E = 0.26%, the difference

in flow asymmetry µy (Equation 5) is everywhere less than 1.6% between the 8000 and
16880 element meshes, and 0.4% between 16880 elements and 33760 elements. The mesh
of 8000 elements is therefore concluded to be sufficient for describing the stationary flow at
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FIG. 3: Spectral element outlines of the computational mesh in the xy-plane (a) and in
the zy-plane x = 0 (b), zoomed in around the stenosis throat.

Re < 400. For Re > 400, the 8000 element mesh does not produce convergent results with
the denser meshes, so the 16880 element mesh of 3646080 nodes is used instead. The 16880
and 33760 element mesh (7292160 nodes) produce similar results for all cases examined, and
all critical Reynolds numbers and eccentricities presented in this paper have been confirmed
with the 33760 element mesh. A representative mesh for this study is therefore the 16880
element mesh with 3646080 nodes, which is on display in Figure 3. The 16880 and 33760
meshes contain hexahedral elements of sinusoidally varying length along the axial direction
in the region |z| < 2, such that the element length is two times smaller at z = 0 than in the
region |z| > 2. A time-step of ∆t = 10−3 is used for the 8000 and 16880 element meshes
in the DNS, and 0.5× 10−3 for the 33670 element mesh. Simulations were performed until
the time trace repeated itself, or a steady state was reached in the case of non-oscillatory
flow, which usually occurred after 100-400 time units (100000-400000 time-steps).

Global linear eigenmodes

The TriGlobal linear eigenmodes are computed directly from ansatz 3. Because the
base flows for eccentric stenoses are non-axisymmetric, it is not possible to consider modes
with different azimuthal wavenumbers separately. The full three-dimensional eigenpairs of
the linearized Navier–Stokes operator are computed using the linearized DNS time-stepper
(available in Nek5000) coupled with the Implicit Restart Arnoldi Method implemented in
PARPACK15. This matrix-free global stability solver implementation was also used in
Tammisola et al.16 (2014), and was there verified against a FreeFem++ based solver.

Definitions

For all examined Reynolds numbers, ranging from Re = 250 to Re = 750, the flow
separates in the diverging section of the stenosis and a jet is formed. The deflection of
the jet can be described by tracking flow asymmetry, µy, as a function of the streamwise
coordinate, as was done by Griffith et al.12 (2013) using the normalized first moment of the
streamwise velocity component:

µy =
∫
yuzdA∫
uzdA

. (5)

This measure, however, includes the effects of shape asymmetry as well as flow asymmetry.
To eliminate the effect of shape asymmetry itself and to be able to compare results for
different shapes, we measure the flow asymmetry in the downstream region where the shape
is constant using the maximum flow asymmetry µ̂y:

µ̂y = max
z>1
{µy(z)}. (6)
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FIG. 4: a) Flow asymmetry as a function of z for Re = 350 and E = 0.23, 0.26, 0.28, 0.3%.
b) Maximum flow asymmetry as a function of eccentricity for Re = 250, 300, 350 and 400.

All points represent steady, stable solutions found by using a fluid at rest as initial
condition.

Validation

The DNS code was validated against results from Griffith et al.12 (2013). Griffith et al.12

(2013) noticed a discontinuity in the asymmetry of the flow when varying eccentricity at
around E ≈ 0.25% and E ≈ 0.18%(±0.02%) for Re = 350 and Re = 400, respectively.
That same discontinuity was found in this study, occuring at E ≈ 0.27% and E ≈ 0.17%
for Re = 350 and Re = 400, respectively. Maximum flow asymmetry µ̂y for Re = 350 and
E = 0.1% was µ̂y ≈ 0.019, found at z ≈ 4.3,12 in agreement with the present study, which
finds µ̂y = 0.0189 at z = 4.34. Stability analysis performed around E = 0 gives the same
leading eigenmode as that found by Sherwin and Blackburn9. Further, leading eigenvalues
for E = 0 and Re = 500, 600, 700 around the symmetric flow match those presented by
Sherwin and Blackburn9. The critical Reynolds number when the symmetric flow turns
unstable was found to be Rec = 713, Sherwin and Blackburn9 approximated this value to
Rec = 722 via an interpolation.

III. RESULTS

DNS with a flow at rest as initial condition

In all cases examined (250 < Re < 750), the DNS shows that separation occurs in the
diverging section of the stenosis, forming a jet in the post-stenotic area (Figure 6c). As
the jet emerges from the stenosis, it is surrounded by a long, thin annular recirculation
zone. When introducing an eccentricity, the length of the recirculation zone depends on the
azimuthal angle φ, the zone being shorter in the upper region of the pipe and longer in the
lower region. This is the result of a weak Coanda type wall attachment.10

The asymptotic flow states retrieved from the DNS with a flow at rest as initial condition
are presented in Figure 4a which plots flow asymmetry µy against streamwise coordinate
z for a range of eccentricities and Re = 350. Figure 4a shows that the maximum flow
asymmetry jumps from µ̂y = 0.06 to µ̂y = 0.12 at around E0 = 0.27%. Figure 4b plots the
maximum flow asymmetry µ̂y against eccentricity E for different Reynolds numbers. As
Figure 4b shows, when eccentricity is increased beyond a certain value E0, e.g., E0 = 0.27%
for Re = 350 and E0 = 0.17% for Re = 400, the flow asymmetry increases abruptly,
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FIG. 5: a) Growth rate σr of the leading eigenmode in branch 1 for Re = 400 to
eccentricity E, along with a quadratic fit. b) Asymmetry of the steady flows as a function
of the eccentricity, E, at two Reynolds numbers. For both Reyonlds numbers, there is a

range of eccentricities in which two steady flows are possible.

which was also noted by Griffith et al.12 (2013). Thus the flow can be divided into two
regimes: branch 1, with the minor flow asymmetry and branch 2 with the greater flow
asymmetry. The physics of this new flow regime, branch 2, is largely the same: the flow
also exhibits a Coanda type wall attachment to the upper side, but the flow separates further
upstream in branch 2 than branch 1, which leads to an increase in flow asymmetry in the
post-stenotic region. A difference that will prove significant when increasing the Reynolds
number between the two regimes is the shape of the recirculation zone; in branch 2, the
lower recirculation zone is considerably thicker, the shear layer is thinner and the flow more
susceptible to shear layer instability than branch 1. This difference will be explained shortly
using stability analysis.

Stability analysis

In order to investigate whether the discontinuity observed at E = E0 can be attributed
to a bifurcation, we perform global linear stability analysis around the flows in branch 1
for various eccentricities. Figure 5a shows the real part of the leading eigenvalue σr for
different eccentricites at Re = 400. The analysis shows that the growth rate of the leading
eigenvalue increases with eccentricity. Further, the eigenvalue drift seems to be of second
order,17 demonstrating an application of the theory on second order sensitivity developed
by Tammisola et al.16. Extrapolating from a quadratic least square fit at Re = 400 shows
that the mode becomes unstable at around E = 0.17%, which matches the discontinuity
in Figure 4b. An identical study performed for Re = 350 predicts the leading mode to
become unstable at E = 0.27%, which is also where the discontinuity occurs in Figure 4b.
It can therefore be concluded that a bifurcation does indeed occur and is responsible for
the observed discontinuity.
At E = 0 (symmetric flow), the leading eigenmode has an azimuthal wavenumber of

m = 1 and is degenerate, with two identical eigenfunctions rotated by π/2 in the azimuthal
direction relative to each other. These two modes have different shape sensitivities and
one of them becomes the sole leading mode when an eccentricity is introduced. The shape
of this leading eigenmode is also affected by eccentricity. The azimuthal dependence is
m = ±1 for E = 0 but is a superposition of different wave numbers, m = 0,±1,±2 being
dominant, for E > 0. The dominant azimuthal wave numbers of the flow in branch 2 are
also m = 0,±1,±2.
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FIG. 6: Streamwise velocity in the plane x = 0 for Re = 400, E = 0: (a) Uz in branch 1,
(b) leading eigenmode uz, (c) Uz in branch 2.

DNS with different flow states as initial conditions

DNS with different flow states as initial conditions were performed by varying the
Reynolds number and eccentricity in the DNS. When varying eccentricity, the initial con-
dition was transformed from the old grid to the new grid (new eccentricity) by pointwise
zeroth order extrapolation, i.e., the solution was moved from the old grid to the new grid.
This procedure was considered to be accurate, since the changes in eccentricity were typi-
cally of the order O(10−4), which then also was the maximal movement of the grid. Starting
from a branch 2 solution, we reduce the eccentricity E and reconverge to branch 2. This
allows us to follow branch 2 for E < E0. Figure 5b shows DNS data for stable, steady
solutions that have been retrieved this way for Re = 350 and Re = 400. Figure 5b reveals
a bistable region, e.g., 0.22% < E < 0.27% for Re = 350, in which hysteresis is possible.
For Re = 400, the bistable region extends from the discontinuity observed at E = 0.17%
down to E = −0.04%. Thus, for Re = 400, branch 1 is stable for E < 0.17%, which is also
shown by Figure 5a. For E > 0.17%, branch 1 is unstable and branch 2 is stable. For
−0.04% < E < 0.17%, both branch 1 and branch 2 are stable, hence −0.04% < E < 0.17%
constitutes a bistable region for Re = 400. For E < −0.04%, branch 2 is unstable and
branch 1 is stable. This also shows that there are two stable solutions for the symmetric ge-
ometry E = 0 at Re = 400. Branch 2 can also be followed by varying the Reynolds number
and letting eccentricity remain constant. Lowering the Reynolds number in the DNS from
Re = 400 shows that branch 2 vanishes at around Re = 390 for E = 0, demonstrating the
presence of a bistable region for the axisymmetric stenosis for Re > 390. Figure 6 shows
the streamwise velocity of branch 1, branch 2 as well as the leading eigenmode of branch 1,
for Re = 400 and E = 0, demonstrating the bifurcation.
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FIG. 7: Flow asymmetry as a function of Reynolds number for E = 0 and E = 0.16%.
The points come from DNS data. The lines are illustrative. Solid lines show the stable,

steady flow. The dotted line shows the regime of sustained intermittency, the dash-dotted
line shows the regime of splashing.

Influence of different stenosis models

Some previous studies, e.g., Vétel et al.7 and Griffith et al.8, used a stenosis model
other than the sinusoidally shaped model used in this study. In Vétel et al.7, the stenosis
was modeled by two intersecting circular arcs. In order to evaluate to what extent the
results from the present study can be applied to experimental results by Vétel et al.7, DNS
simulations for the different stenosis models were performed and compared. Results showed
that the flow physics is largely the same and that bifurcation also occurs for this geometry,
but for a slightly higher eccentricity. Therefore, when comparing results between these two
geometries, one should only expect qualitative agreement in terms of Reynolds number or
eccentricity.

Bifurcation diagram

In Figure 6 c, the central jet is deflected in the positive y-direction. When the prob-
lem is axisymmetric, the jet can be deflected in any azimuthal direction. Thus the flow
exhibits an axisymmetric subcritical pitchfork bifurcation. Following branch 1 for E = 0
by increasing the Reynolds number gives steady, symmetric solutions all the way up to the
critical Reynolds number Rec = 713. A bifurcation diagram for E = 0 and 0.16% is pre-
sented in Figure 7. Following branch 1 for E = 0.27% by increasing the Reynolds number
gives Rec = 350. Hence the critical Reynolds number at which the nearly symmetric flow
(branch 1) transforms into branch 2 is halved by an asymmetry less than 0.3% of the pipe
diameter, which may well be less than engineering tolerance for pipes. To illustrate the
hypersensitivity of branch 1, consider a pipe with a diameter of 2 cm. When introducing a
shape asymmetry the width of a human hair in this pipe, the critical Reynolds number for
transformation to the strongly asymmetric flow of branch 2 decreases by more than 50%.
The bifurcation diagram presented in Figure 7 shows that branch 2 is stable for Re > 390

for E = 0 and Re > 360 for E = 0.16%. This difference in Reynolds number (∼ 8%) is
small compared to branch 1, which turns unstable at Re = 713 for E = 0 and Re = 400 for
E = 0.16%. This constitutes a difference in the critical Reynolds number of ∼ 45%. Hence
the stability of branch 1 changes considerably more with eccentricity than that of branch 2.
Because of the difference in shape sensitivity between the two branches, the bistable region
shrinks with increasing eccentricity, and eventually leads to a supercritical region without
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FIG. 8: Cross-stream velocity, uy, as a function of time for six axial positions, z, at
Re = 500 and E = 0. This shows the latter stages of the transition from branch 1 to

branch 2

hysteresis, starting at around (E,Re) = (0.32%, 330). Because the flow of branch 1 is also
more sensitive to shape variations than branch 2, the two branches converge at around
(E,Re) = (0.4%, 320), and for E > 0.4%, no discontinuity between branch 1 and 2 could be
observed. A preliminary investigation shows that if the jet of branch 2 is skewed towards the
negative y-direction, then it is destabilized by an eccentricity in the positive y-direction.
When the jet is skewed in the negative y-direction and an eccentricity of E = 0.16% is
introduced, the flow converges to branch 1 when Re < 440, as compared to Re < 390 for
E = 0.

Flow in branch 2

The saturation process of the transition from branch 1 into branch 2 exhibits an over-
shoot and a settling time that grows with Reynolds number, the instability responsible for
bifurcation being highly nonlinear. For Re ≥ 417, sporadic shear layer oscillations coupled
with vortex shedding occurs when the amplitude of the mode reaches a local maximum.
Figure 8 depicts the transition from branch 1 into branch 2 for E = 0, Re = 500 by showing
the time trace of the cross-stream velocity component uy, representing the amplitude of the
unstable mode, during the settling phase into branch 2. No oscillations, however, could be
observed in the flow’s asymptotic state. Vortex shedding occurs for all azimuthal angles,
but is more prominent where the recirculation region is thicker, which is in the lower end of
the pipe, at φ = π. Because the vortices are only shed when the extent of the recirculation
region is at a temporal local extreme as the flow settles in to branch 2, the oscillations are
not continuous but intermittent. As the vortices are being convected downstream, they in-
crease in amplitude, demonstrating a convective instability. Both Griffith et al.8 (2008) and
Blackburn, Sherwin, and Barkley18 demonstrated numerically the presence of convective
instabilities in axisymmetric stenotic flows (branch 1). It was also observed experimentally
by Griffith et al.8. The experimental Strouhal number, St, reported by Griffith et al.8

(2008) lay within the interval 2.5 < St < 5 for 350 < Re < 800. The Strouhal number
in this study was found to be 2 < St < 3, depending on eccentricity and the Reynolds
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FIG. 9: Instantaneous streamwise velocity contours. Left: experimental results from Vétel
et al. (2008) for Re = 440, ∆t = 0.94. Right: Numerical results from the present study for

Re = 700 and ∆t = 1.

number. Ahmed and Giddens6 also observed shear layer oscillations in the trailing edge of
the recirculation zone at Re = 500.

The shear layer oscillations that occur during the settling phase into branch 2, depicted
in Figure 8 at Re = 500, increase in amplitude as the Reynolds number increases. When
the Reynolds number is high enough, the shear layer oscillations cause a wavy jet pattern
in the region 12 < z < 17, followed by turbulence in z > 17. Because the shear layer
oscillations are intermittent, the wavy-turbulent pattern is temporal, giving the flow a
burst-like time trace. The temporal and spatial extension of the wavy-turbulent region that
emerge in 12 < z < 17 increases progressively with Reynolds number. When the Reynolds
number is sufficiently high (Re & 525), the wavy-turbulent region progresses upstream,
up to z ≈ 4. The turbulent region of fluid is then convected downstream while the flow
relaminarizes upstream. This process is depicted in Figure 9 which shows the evolution of
streamwise velocity uz in the plane x = 0 at different times throughout the cycle. When
the flow returns to a laminar state, it is firstly attracted to branch 1 in the form of a sym-
metric, wide jet. It is then repelled to branch 2 by the growth of the leading eigenmode in
branch 1, which is why the lower recirculation region grows in thickness between t = 0 and
t = 20∆t (Figure 9). The vortex shedding that occurs while the flow settles in to branch 2
causes the wavy-turbulent pattern to reemerge in the region 12 < z < 17 at ∆t = 18. The
wavy-turbulent flow then travels upstream and reaches z = 4 at ∆t ≈ 25. The turbulence
is then convected downstream and the flow relaminarizes. This pattern repeats itself with
a period of approximately ∼ 30∆t. For 575 & Re & 525, this intermittency pattern is
transient in time, the flow settles into branch 2 after typically two or three intermittency
sequences. As the Reynolds number increases further, the critical region 12 < z < 17 main-
tains the wavy-turbulent flow without relaminarizing. For Re ≥ 560 and E = 0.16%, the
flow splashes, the jet sticking to the opposite pipe wall, i.e., in negative y-direction, after the
initial intermittency sequences have passed. For Re ≥ 580 and E = 0, the wavy-turbulent
region progresses upstream to z ≈ 4, after which the flow relaminarizes upstream, following
the same intermittency sequence as that illustrated in Figure 9. By this mechanism, the
intermittency pattern is no longer transient but sustained. The observed intermittency
agrees well with experimental results by Vétel et al.7 (Figure 9). This phenomenon was
also observed by Sherwin and Blackburn9. The intermittency pattern was largely the same
as in the present study, the long time scale fluctuations were reported to repeat themselves
with a time interval of ∼ 35∆t, as compared to ∼ 30∆t in the present study. The turbulent
breakdown was reported to occur at z ≈ 10 and progressed upstream to z ≈ 4. Further,
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Sherwin and Blackburn9 observed a flapping of the jet to the opposite pipe wall, which was
also observed in this study. A similar intermittency phenomenon was also seen by Lashgari
et al.19 for a planar X-junction geometry. As the Reynolds number increases further, the
turbulent phases become longer on the expense of laminar phases.
In branch 1, the critical Reynolds number for transition to unsteady flow is Rec = 713.

When a small asymmetry is introduced, however, the flow transitions to branch 2, where
the Reynolds number for transition to unsteady flow is Re ≈ 525. Breaking axisymmetry
in stenotic flow lowers the Reynolds number for transition into unsteady flow via this
mechanism.

Discussion

Griffith et al.8 showed via experiments that Kelvin-Helmholtz waves are formed in the
shear layer between the jet and the recirculation zone. These grow as they convect down-
stream and cause local turbulence at z = 12. Griffith et al.20 showed that this convective
instability can be thought of as global non-modal transient growth of perturbations.21 This
was also showed by Blackburn, Sherwin, and Barkley18 for a sinusoidal stenosis model. Even
though these numerical investigations were limited to axisymmetric flows (branch 1), our
results indicate the presence of convective instabilities in non-axisymmetric flows (branch 2)
as well by the oscillations that grow in amplitude while being transported downstream from
the recirculation region and eventually causing local turbulence in the region 12 < z < 17
and intermittency for Re > 525. Experimental results from Griffith et al.8 indicated oscil-
lations to begin by Re = 400, which also is in agreement with the present study that found
oscillations for Re ≥ 417 in branch 2.

The bifurcation diagram presented in Figure 7 is different from the one found by Sherwin
and Blackburn9. In that study, branch 2 extended down to Re = 580 for E = 0 instead
of Re = 390 which was found in the present study. In Sherwin and Blackburn9, branch 2
was tracked by lowering the Reynolds number from Re > Rec = 722. By using the same
method as Sherwin and Blackburn9 and lowering the Reynolds number in branch 2 in the
DNS for E = 0 down from Re = 750, the solution converged to branch 2 while Re > 580.
When Re < 580, the solution converged to branch 1, thus recovering the results found by
Sherwin and Blackburn9. Hence this discrepancy can be attributed to the different initial
conditions set in the DNS. The present study was using a 3D model and found the lower
threshold value of branch 2 by varying eccentricity instead of the Reynolds number, thus
recovering a larger part of branch 2 than can be seen by only varying the Reynolds number
for E = 0.
The flow described by Varghese, Frankel, and Fischer11 at E = 0 for Re = 500 and

1000 fits the description of branch 1. The flow was reported to be laminar and steady in
both cases with a wide symmetric jet. Branch 1, however, becomes unstable at a critical
Reynolds number of 713. A possible explanation is that Varghese, Frankel, and Fischer11

did not give the simulation sufficient time to be repelled from what should be an unstable
solution. Supporting this explanation is the fact that an iterative method was used, slowly
increasing Re with a linear step increment of 10, which should mitigate disturbances and
therefore keep the solution close to that of branch 1. For E = 5% and Re = 500, a deflected
jet of the same kind as the flow in branch 2 was found. The flow was reported to be steady,
which also agrees with the asymptotic results of the present study for these parameters.
For E = 5% and Re = 1000, turbulence in the post-stenotic region for z > 4 was reported,
which also agrees with the present study’s result for branch 2.
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FIG. 10: Re = 350, E = 0.26%. Isosurfaces of the streamwise velocity for branch 1 (left
image), branch 2 (middle image) and experimental results by Vétel et al.7 (right image)
for the domain 1 < z < 8. The dark surface represents Uz = 2 and the bright Uz = −0.4.
This shows that the experimental flow state reported by Vétel et al.7 belongs to branch 2.

The experimental results of Ahmed and Giddens6 at E ≈ 0 showed discrete frequency
oscillations for Re = 500 at the trailing edge of the recirculation zone, in agreement with the
present study’s results on the settling phase of branch 2. For Re = 1000, the oscillations
erupted into random fluctuations, the flow being intensely turbulent, also in agreement
with the present study’s results on branch 2. No data was presented so a quantitative
comparison is not possible.
Vétel et al.7 modelled the stenosis as two intersecting circular arcs. As was noted earlier,

one should not expect a quantitative agreement with this study, but a qualitative com-
parison is possible. Results from Vétel et al.7 showed a slightly asymmetric jet for low
Reynolds numbers, as for the flow in branch 1. At Re = 348, that study found that the
jet was strongly deflected to one side. Figure 10 shows isocontours for the streamwise
velocity Uz at Re = 350 and E = 0.26% for branch 1 and branch 2 along with experimental
results from Vétel et al.7. This clearly shows that experimental results by Vétel et al.7 for
Re ≥ 348 are in excellent agreement with numerical results from branch 2, hence it can be
concluded that the experimental flow state reported by Vétel et al.7 belongs in branch 2.
Since branch 2 exists only for Re > 390 at E = 0, it is likely that there was an unintended
shape asymmetry in the stenosis of the order of E = 0.3%, despite the quoted tolerance
of 25 microns in the 2 cm diameter pipe, meaning that the eccentricity in theory should
be lower than 0.125%. The rest of the reported results are in excellent agreement with the
present study for branch 2, although the critical Reynolds numbers are somewhat different.
Vétel et al.7 noted oscillations over a critical Reynolds number of Re & 400, which is in good
agreement with this study, which noted oscillations when Re ≥ 417. However, the critical
Reynolds number for intermittency was reported to be Rec ≈ 440, whereas intermittency
was observed for Re & 525 in the present study. This discrepancy can presumably be
explained by the different axial shape profiles of the stenosis. The intermittency patterns
are similar, albeit for different Reynolds numbers. A difference is that the present study did
not find the swirling motion reported by Vétel et al.7. The reason might be that the stenosis
model used in the experiments did not have a shape asymmetry as has been modeled in
this study in the form of eccentricity, but another more complicated, possibly semicircular,
shape.
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IV. CONCLUSION

Direct numerical simulations and global linear stability analysis of the flow in a symmet-
ric and slightly asymmetric stenoses have been carried out. The results show that, for
sufficiently high Reynolds number, there are two groups of stable solutions to the Navier–
Stokes equations at the same Reynolds number and eccentricity. Flows in the first group are
axisymmetric for an axisymmetric geometry and nearly axisymmetric for the asymmetric
cases. Flows in the second group are strongly skewed to one side for all geometries. For the
perfectly symmetric case, this bistable region extends from a fold bifurcation at Re = 390
to a subcritical bifurcation at Re = 713. The subcritical bifurcation is extremely sensitive
to shape asymmetry. For example, when an eccentricity of 0.27% of the pipe diameter is
introduced, the Reynolds number at which the first group of solutions becomes unstable
decreases from Rec = 713 to Rec = 350. By mapping all the previous experimental and
numerical results into these two groups, we obtain excellent agreement between results for
both steady and transient flow behavior.76891112

The first group of solutions remains steady all the way up to the subcritical bifurcation.
The second group has a thicker recirculation zone and a thinner shear layer, however, and
is more susceptible to shear layer instability. For Re ≥ 417, shear layer oscillations occur on
the second group, which then grow in amplitude while being convected downstream. The
transition number to intermittent flow in this group (Re & 525) is much lower than that
of the first group of solutions (Re > 713). Therefore, breaking axisymmetry in a stenotic
flow lowers the Reynolds number at which oscillations start by provoking non-oscillatory
transition from the first group to the second group, followed by growth of oscillations in
the second group. For Re & 525, the oscillations grow to a sufficiently large amplitude for
local turbulence to be caused downstream of the stenosis, which travels upstream until the
flow is turbulent for z > 4. This is followed by relaminarization. For Re ≥ 580 at E = 0,
the intermittency is sustained and the sequence repeats itself at a regular frequency, the
flow being highly intermittent. As the Reynolds number increases further, the turbulence
reaches further upstream and the turbulent phases become longer at the expense of the
laminar phases.
The results presented here show that there are two branches of steady states in stenotic

flow at Reynolds numbers typical of arterial flow (Re ∼ 400). The first branch, in which the
flow is closest to being symmetric, becomes unstable at much lower Reynolds numbers when
the stenosis is even slightly non-axisymmetric. The flow then grows to the second branch,
in which the central jet is skewed to one side. Both branches develop into an unsteady state
when the Reynolds number increases, but this occurs at lower Reynolds number for the
second branch than it does for the first. We suggest that these two effects explain the dis-
crepancies between previous numerical and experimental studies because tiny asymmetries
are inevitable in experiments but not in numerical studies. These asymmetries generate
flows that become unsteady at lower Reynolds numbers, leading to earlier turbulent transi-
tion and intermittency than that predicted numerically. Most importantly, arterial stenoses
are always asymmetric and are therefore likely to be more turbulent than numerical studies
suggest. Future studies should be conducted to quantify the effect of asymmetry on the
hydrodynamic stability of stenotic flows under more realistic arterial conditions, e.g., with
a pulsatile inlet profile and non-Newtonian flow models.
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