2,382 research outputs found

    Dissipative chaotic scattering

    Get PDF
    We show that weak dissipation, typical in realistic situations, can have a metamorphic consequence on nonhyperbolic chaotic scattering in the sense that the physically important particle-decay law is altered, no matter how small the amount of dissipation. As a result, the previous conclusion about the unity of the fractal dimension of the set of singularities in scattering functions, a major claim about nonhyperbolic chaotic scattering, may not be observable.Comment: 4 pages, 2 figures, revte

    Ell3 Enhances Differentiation of Mouse Embryonic Stem Cells by Regulating Epithelial-Mesenchymal Transition and Apoptosis

    Get PDF
    Ell3 is a testis-specific RNA polymerase II elongation factor whose cellular function is not clear. The present study shows that Ell3 is activated during the differentiation of mouse embryonic stem cells (mESCs). Furthermore, Ell3 plays a critical role in stimulating lineage differentiation of mESCs by promoting epithelial-mesenchymal transition (EMT) and suppressing apoptosis. Mouse ESCs engineered to stably express Ell3 were rapidly differentiated compared with control cells either under spontaneous differentiation or neural lineage-specific differentiation conditions. Gene expression profile and quantitative RT-PCR analysis showed that the expression of EMT markers, such as Zeb1 and Zeb2, two major genes that regulate EMT, was upregulated in Ell3-overexpressing mESCs. Remarkably, knockdown of Zeb1 attenuated the enhanced differentiation capacity of Ell3-overexpressing mESCs, which indicates that Ell3 plays a role in the induction of mESC differentiation by inducing EMT. In contrast to Ell3-overexpressing mESCs, Ell3-knock down mESCs could not differentiate under differentiation conditions and, instead, underwent caspase-dependent apoptosis. In addition, apoptosis of differentiating Ell3-knock out mESCs was associated with enhanced expression of p53. The present results suggest that Ell3 promotes the differentiation of mESCs by activating the expression of EMT-related genes and by suppressing p53 expression

    Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma

    Get PDF
    BackgroundThe purpose of this study was to identify new tumour suppressor microRNAs (miRs) in clear cell renal cell carcinoma (ccRCC), carry out functional analysis of their suppressive role and identify their specific target genes.MethodsTo explore suppressor miRs in RCC, miR microarray and real-time PCR were performed using HK-2 and A-498 cells. Cell viability, invasion and wound healing assays were carried out for functional analysis after miR transfection. To determine target genes of miR, we used messenger RNA (mRNA) microarray and target scan algorithms to identify target oncogenes. A 3'UTR luciferase assay was also performed. Protein expression of target genes in ccRCC tissues was confirmed by immunohistochemistry and was compared with miR-584 expression in ccRCC tissues.ResultsExpression of miR-584 in RCC (A-498 and 769-P) cells was downregulated compared with HK-2 cells. Transfection of miR-584 dramatically decreased cell motility. The ROCK-1 mRNA was inhibited by miR-584 and predicted to be target gene. The miR-584 decreased 3'UTR luciferase activity of ROCK-1 and ROCK-1 protein expression. Low expression of miR-584 in ccRCC tissues was correlated with high expression of ROCK-1 protein. The knockdown of ROCK-1 by siRNA inhibited cell motility.ConclusionmiR-584 is a new tumour suppressor miR in ccRCC and inhibits cell motility through downregulation of ROCK-1

    Effects of Magnetovolume and Spin-orbit Coupling in the Ferromagnetic Cubic Perovskite BaRuO3

    Full text link
    BaRuO3 having five different crystal structures has been synthesized by varying the pressure while sintering. Contrary to the other phases being nonmagnetic, the cubic perovskite phase synthesized recently shows an itinerant ferromagnetic character. We investigated this ferromagnetic BaRuO3 using first principles calculations. A few van Hove singularities appear around the Fermi energy, causing unusually high magnetovolume effects of ΔM/Δa\Delta M/\Delta a ~ 4.3 μB\mu_B/\AA as well as a Stoner instability [IN(0) ~ 1.2]. At the optimized lattice parameter a, the magnetic moment M is 1.01 μB\mu_B in the local spin density approximation. When spin-orbit coupling is included, the topologies of some Fermi surfaces are altered, and the net moment is reduced by 10% to a value very close to the experimentally observed value of ~ 0.8 μB\mu_B. Our results indicate that this ferromagnetism is induced by the Stoner instability, but the combined effects of the p-d hybridization, the magnetovolume, and the spin-orbit coupling determine the net moment. In addition, we briefly discuss the results of the tight-binding Wannier function technique.Comment: 5 pages and 5 embedded figures; proceedings of ICM 201

    Culture of Mouse Embryonic Stem Cells with Serum but without Exogenous Growth Factors Is Sufficient to Generate Functional Hepatocyte-Like Cells

    Get PDF
    Mouse embryonic stem cells (mESC) have been used to study lineage specification in vitro, including towards a hepatocyte-like fate, and such investigations guided lineage differentiation protocols for human (h)ESC. We recently described a four-step protocol to induce hepatocyte-like cells from hESC which also induced hepatocyte-like cell differentiation of mouse induced pluripotent stem cells. As ESC also spontaneously generate hepatocyte-like cells, we here tested whether the growth factors and serum used in this protocol are required to commit mESC and hESC to hepatocyte-like cells. Culture of mESC from two different mouse strains in the absence of serum and growth factors did not induce primitive streak/definitive endoderm genes but induced default differentiation to neuroectoderm on day 6. Although Activin-A and Wnt3 induced primitive streak/definitive endoderm transcripts most robustly in mESC, simple addition of serum also induced these transcripts. Expression of hepatoblast genes occurred earlier when growth factors were used for mESC differentiation. However, further maturation towards functional hepatocyte-like cells was similar in mESC progeny from cultures with serum, irrespective of the addition of growth factors, and irrespective of the mouse strain. This is in contrast to hESC, where growth factors are required for specification towards functional hepatocyte-like cells. Culture of mESC with serum but without growth factors did not induce preferential differentiation towards primitive endoderm or neuroectoderm. Thus, although induction of primitive streak/definitive endoderm specific genes and proteins is more robust when mESC are exposed to a combination of serum and exogenous growth factors, ultimate generation of hepatocyte-like cells from mESC occurs equally well in the presence or absence of exogenous growth factors. The latter is in contrast to what we observed for hESC. These results suggest that differences exist between lineage specific differentiation potential of mESC and hESC, requiring optimization of different protocols for ESC from either species

    Triptolide (TPL) Inhibits Global Transcription by Inducing Proteasome-Dependent Degradation of RNA Polymerase II (Pol II)

    Get PDF
    Triptolide (TPL), a key biologically active component of the Chinese medicinal herb Tripterygium wilfordii Hook. f., has potent anti-inflammation and anti-cancer activities. Its anti-proliferative and pro-apoptotic effects have been reported to be related to the inhibition of Nuclear Factor κB (NF-κB) and Nuclear Factor of Activated T-cells (NFAT) mediated transcription and suppression of HSP70 expression. The direct targets and precise mechanisms that are responsible for the gene expression inhibition, however, remain unknown. Here, we report that TPL inhibits global gene transcription by inducing proteasome-dependent degradation of the largest subunit of RNA polymerase II (Rpb1) in cancer cells. In the presence of proteosome inhibitor MG132, TPL treatment causes hyperphosphorylation of Rpb1 by activation of upstream protein kinases such as Positive Transcription Elongation Factor b (P-TEFb) in a time and dose dependent manner. Also, we observe that short time incubation of TPL with cancer cells induces DNA damage. In conclusion, we propose a new mechanism of how TPL works in killing cancer. TPL inhibits global transcription in cancer cells by induction of phosphorylation and subsequent proteasome-dependent degradation of Rpb1 resulting in global gene transcription, which may explain the high potency of TPL in killing cancer

    New Insights into the Mechanisms of Embryonic Stem Cell Self-Renewal under Hypoxia: A Multifactorial Analysis Approach

    Get PDF
    Previous reports have shown that culturing mouse embryonic stem (mES) cells at different oxygen tensions originated different cell proliferation patterns and commitment stages depending on which signaling pathways are activated or inhibited to support the pluripotency state. Herein we provide new insights into the mechanisms by which oxygen is influencing mES cell self-renewal and pluripotency. A multifactorial approach was developed to rationally evaluate the singular and interactive control of MEK/ERK pathway, GSK-3 inhibition, and LIF/STAT3 signaling at physiological and non-physiological oxygen tensions. Collectively, our methodology revealed a significant role of GSK-3-mediated signaling towards maintenance of mES cell pluripotency at lower O2 tensions. Given the central role of this signaling pathway, future studies will need to focus on the downstream mechanisms involved in ES cell self-renewal under such conditions, and ultimately how these findings impact human models of pluripotency

    Circadian Disruption Accelerates Tumor Growth and Angio/Stromagenesis through a Wnt Signaling Pathway

    Get PDF
    Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more “normal” 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway

    Mesenchymal Stem Cells Transfer Mitochondria to the Cells with Virtually No Mitochondrial Function but Not with Pathogenic mtDNA Mutations

    Get PDF
    It has been reported that human mesenchymal stem cells (MSCs) can transfer mitochondria to the cells with severely compromised mitochondrial function. We tested whether the reported intercellular mitochondrial transfer could be replicated in different types of cells or under different experimental conditions, and tried to elucidate possible mechanism. Using biochemical selection methods, we found exponentially growing cells in restrictive media (uridine− and bromodeoxyuridine [BrdU]+) during the coculture of MSCs (uridine-independent and BrdU-sensitive) and 143B-derived cells with severe mitochondrial dysfunction induced by either long-term ethidium bromide treatment or short-term rhodamine 6G (R6G) treatment (uridine-dependent but BrdU-resistant). The exponentially growing cells had nuclear DNA fingerprint patterns identical to 143B, and a sequence of mitochondrial DNA (mtDNA) identical to the MSCs. Since R6G causes rapid and irreversible damage to mitochondria without the removal of mtDNA, the mitochondrial function appears to be restored through a direct transfer of mitochondria rather than mtDNA alone. Conditioned media, which were prepared by treating mtDNA-less 143B ρ0 cells under uridine-free condition, induced increased chemotaxis in MSC, which was also supported by transcriptome analysis. Cytochalasin B, an inhibitor of chemotaxis and cytoskeletal assembly, blocked mitochondrial transfer phenomenon in the above condition. However, we could not find any evidence of mitochondrial transfer to the cells harboring human pathogenic mtDNA mutations (A3243G mutation or 4,977 bp deletion). Thus, the mitochondrial transfer is limited to the condition of a near total absence of mitochondrial function. Elucidation of the mechanism of mitochondrial transfer will help us create a potential cell therapy-based mitochondrial restoration or mitochondrial gene therapy for human diseases caused by mitochondrial dysfunction

    Ginseng and Ganoderma lucidum Use after Breast Cancer Diagnosis and Quality of Life: A Report from the Shanghai Breast Cancer Survival Study

    Get PDF
    Objective: To evaluate associations between quality of life (QOL) and use of ginseng and Ganoderma lucidum (G. lucidum) among breast cancer survivors. Methods: Included in this study were 4,149 women with breast cancer who participated in the Shanghai Breast Cancer Survival Study. Ginseng use was assessed at 6-, 18-, and 36-month post-diagnosis surveys; G. lucidum use was assessed at the 6- and 36-month surveys. QOL was evaluated at the 6- and 36-month surveys. Multiple linear regression models were used to examine associations between ginseng and G.lucidum use and QOL assessed at the 36-month survey, with adjustment for potential confounders and baseline QOL. Results: At 6 months post-diagnosis, 14.2 % of participants reported regular use of ginseng and 58.8 % reported use of G. lucidum. We found no significant associations between ginseng use at 6, 18, and 36 months post-diagnosis and participants’ total QOL score or individual scores for psychological, physical, or social well-being. Post-diagnosis G. lucidum use was positively associated with social well-being (adjusted mean difference: 1.26; 95 % CI: 0.66, 1.86), but was inversely associated with physical well-being (adjusted mean difference: 21.16; 95 % CI: 21.86, 20.47) with a dose-response pattern observed for cumulative number of times of use (P for trend,0.001 for both). Conclusion: We found no evidence that post-diagnosis ginseng use improved the QOL of breast cancer survivors. Post
    corecore