66 research outputs found

    Flat Low-Loss Silicon Gradient Index Lens for Millimeter and Submillimeter Wavelengths

    Get PDF
    We present the design, simulation, and planned fabrication process of a flat high resistivity silicon gradient index (GRIN) lens for millimeter and submillimeter wavelengths with very low absorption losses. The gradient index is created by sub wavelength holes whose size increases with the radius of the lens. The effective refractive index created by the subwavelength holes is constant over a very wide bandwidth, allowing the fabrication of achromatic lenses up to submillimeter wavelengths. The designed GRIN lens was successfully simulated and shows an expected efficiency better than that of a classic silicon plano-concave spherical lens with approximately the same thickness and focal length. Deep reactive ion etching (DRIE) and wafer-bonding of several patterned wafers will be used to realize our first GRIN lens prototype

    The First Neptune Analog or Super-Earth with Neptune-like Orbit: MOA-2013-BLG-605Lb

    Full text link
    We present the discovery of the first Neptune analog exoplanet or super-Earth with Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at 9149\sim 14 times the expected position of the snow-line, asnowa_{\rm snow}, which is similar to Neptune's separation of 11asnow 11\,a_{\rm snow} from the Sun. The planet/host-star mass ratio is q=(3.6±0.7)×104q=(3.6\pm0.7)\times 10^{-4} and the projected separation normalized by the Einstein radius is s=2.39±0.05s=2.39\pm0.05. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy". The three models have (i) a Neptune-mass planet with a mass of Mp=217+6MEarthM_{\rm p}=21_{-7}^{+6} M_{Earth} orbiting a low-mass M-dwarf with a mass of Mh=0.190.06+0.05MM_{\rm h}=0.19_{-0.06}^{+0.05} M_\odot, (ii) a mini-Neptune with Mp=7.91.2+1.8MEarthM_{\rm p}= 7.9_{-1.2}^{+1.8} M_{Earth} orbiting a brown dwarf host with Mh=0.0680.011+0.019MM_{\rm h}=0.068_{-0.011}^{+0.019} M_\odot and (iii) a super-Earth with Mp=3.20.3+0.5MEarthM_{\rm p}= 3.2_{-0.3}^{+0.5} M_{Earth} orbiting a low-mass brown dwarf host with Mh=0.0250.004+0.005MM_{\rm h}=0.025_{-0.004}^{+0.005} M_\odot which is slightly favored. The 3-D planet-host separations are 4.61.2+4.7_{-1.2}^{+4.7} AU, 2.10.2+1.0_{-0.2}^{+1.0} AU and 0.940.02+0.67_{-0.02}^{+0.67} AU, which are 8.91.4+10.58.9_{-1.4}^{+10.5}, 121+712_{-1}^{+7} or 141+1114_{-1}^{+11} times larger than asnowa_{\rm snow} for these models, respectively. The Keck AO observation confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbit are common. So processes similar to the one that formed Neptune in our own Solar System or cold super-Earth may be common in other solar systems.Comment: 54 pages, 10 figures, 13 tables, Accepted for publication in the Ap

    OGLE-2013-BLG-0102LA,B: Microlensing binary with components at star/brown-dwarf and brown-dwarf/planet boundaries

    Get PDF
    We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification Amax1.5A_{\rm max}\sim 1.5. It is found that the event was produced by a binary lens with a mass ratio between the components of q=0.13q = 0.13 and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are M1=0.096±0.013 MM_{1} = 0.096 \pm 0.013~M_{\odot} and M2=0.012±0.002 MM_{2} = 0.012 \pm 0.002~M_{\odot}, which correspond to near the hydrogen-burning and deuterium-burning mass limits, respectively. The distance to the lens is 3.04±0.31 kpc3.04 \pm 0.31~{\rm kpc} and the projected separation between the lens components is 0.80±0.08 AU0.80 \pm 0.08~{\rm AU}.Comment: 6 figures, 2 tables, ApJ submitte

    OGLE-2012-BLG-0455/MOA-2012-BLG-206: Microlensing event with ambiguity in planetary interpretations caused by incomplete coverage of planetary signal

    Get PDF
    Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interpreting the lens system, and thus understanding the causes of different types of degeneracy is important. In this work, we show that incomplete coverage of a planetary perturbation can result in degenerate solutions even for events where the planetary signal is detected with a high level of statistical significance. We demonstrate the degeneracy for an actually observed event OGLE-2012-BLG-0455/MOA-2012-BLG-206. The peak of this high-magnification event (Amax400)(A_{\rm max}\sim400) exhibits very strong deviation from a point-lens model with Δχ24000\Delta\chi^{2}\gtrsim4000 for data sets with a total number of measurement 6963. From detailed modeling of the light curve, we find that the deviation can be explained by four distinct solutions, i.e., two very different sets of solutions, each with a two-fold degeneracy. While the two-fold (so-called "close/wide") degeneracy is well-understood, the degeneracy between the radically different solutions is not previously known. The model light curves of this degeneracy differ substantially in the parts that were not covered by observation, indicating that the degeneracy is caused by the incomplete coverage of the perturbation. It is expected that the frequency of the degeneracy introduced in this work will be greatly reduced with the improvement of the current lensing survey and follow-up experiments and the advent of new surveys.Comment: 5 pages, 3 figures, ApJ accepte

    Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    Get PDF
    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M [SUB]⊙[/SUB] and 0.034 M [SUB]⊙[/SUB], and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can robustly form at least down to masses of ~0.02 M [SUB]⊙[/SUB]. Future microlensing surveys will measure a mass-selected sample of BD binary systems, which can then be directly compared to similar samples of stellar binaries
    corecore