Abstract

We present the discovery of the first Neptune analog exoplanet or super-Earth with Neptune-like orbit, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at 9149\sim 14 times the expected position of the snow-line, asnowa_{\rm snow}, which is similar to Neptune's separation of 11asnow 11\,a_{\rm snow} from the Sun. The planet/host-star mass ratio is q=(3.6±0.7)×104q=(3.6\pm0.7)\times 10^{-4} and the projected separation normalized by the Einstein radius is s=2.39±0.05s=2.39\pm0.05. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy". The three models have (i) a Neptune-mass planet with a mass of Mp=217+6MEarthM_{\rm p}=21_{-7}^{+6} M_{Earth} orbiting a low-mass M-dwarf with a mass of Mh=0.190.06+0.05MM_{\rm h}=0.19_{-0.06}^{+0.05} M_\odot, (ii) a mini-Neptune with Mp=7.91.2+1.8MEarthM_{\rm p}= 7.9_{-1.2}^{+1.8} M_{Earth} orbiting a brown dwarf host with Mh=0.0680.011+0.019MM_{\rm h}=0.068_{-0.011}^{+0.019} M_\odot and (iii) a super-Earth with Mp=3.20.3+0.5MEarthM_{\rm p}= 3.2_{-0.3}^{+0.5} M_{Earth} orbiting a low-mass brown dwarf host with Mh=0.0250.004+0.005MM_{\rm h}=0.025_{-0.004}^{+0.005} M_\odot which is slightly favored. The 3-D planet-host separations are 4.61.2+4.7_{-1.2}^{+4.7} AU, 2.10.2+1.0_{-0.2}^{+1.0} AU and 0.940.02+0.67_{-0.02}^{+0.67} AU, which are 8.91.4+10.58.9_{-1.4}^{+10.5}, 121+712_{-1}^{+7} or 141+1114_{-1}^{+11} times larger than asnowa_{\rm snow} for these models, respectively. The Keck AO observation confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbit are common. So processes similar to the one that formed Neptune in our own Solar System or cold super-Earth may be common in other solar systems.Comment: 54 pages, 10 figures, 13 tables, Accepted for publication in the Ap

    Similar works