984 research outputs found

    PHO1 Exports Phosphate from the Chalazal Seed Coat to the Embryo in Developing Arabidopsis Seeds.

    Get PDF
    Seed production requires the transfer of nutrients from the maternal seed coat to the filial endosperm and embryo. Because seed coat and filial tissues are symplasmically isolated, nutrients arriving in the seed coat via the phloem must be exported to the apoplast before reaching the embryo. Proteins implicated in the transfer of inorganic phosphate (Pi) from the seed coat to the embryo are unknown despite seed P content being an important agronomic trait. Here we show that the Arabidopsis Pi exporters PHO1 and PHOH1 are expressed in the chalazal seed coat (CZSC) of developing seeds. PHO1 is additionally expressed in developing ovules. Phosphorus (P) content and Pi flux between the seed coat and embryo were analyzed in seeds from grafts between WT roots and scions from either pho1, phoh1, or the pho1 phoh1 double mutant. Whereas P content and distribution between the seed coat and embryo in fully mature dry seeds of these mutants are similar to the WT, at the mature green stage of seed development the seed coat of the pho1 and pho1 phoh1 mutants, but not of the phoh1 mutant, retains approximately 2-fold more P than its WT control. Expression of PHO1 under a CZSC-specific promoter complemented the seed P distribution phenotype of the pho1 phoh1 double mutant. CZSC-specific down-expression of PHO1 also recapitulated the seed P distribution phenotype of pho1. Together, these experiments show that PHO1 expression in the CZSC is important for the transfer of P from the seed coat to the embryo in developing seeds

    Optimization of sample preparation and green color imaging using the mNeonGreen fluorescent protein in bacterial cells for photoactivated localization microscopy.

    Get PDF
    mNeonGreen fluorescent protein is capable of photo-switching, hence in principle applicable for super-resolution imaging. However, difficult-to-control blinking kinetics that lead to simultaneous emission of multiple nearby mNeonGreen molecules impedes its use for PALM. Here, we determined the on- and off- switching rate and the influence of illumination power on the simultaneous emission. Increasing illumination power reduces the probability of simultaneous emission, but not enough to generate high quality PALM images. Therefore, we introduce a simple data post-processing step that uses temporal and spatial information of molecule localizations to further reduce artifacts arising from simultaneous emission of nearby emitters. We also systematically evaluated various sample preparation steps to establish an optimized protocol to preserve cellular morphology and fluorescence signal. In summary, we propose a workflow for super-resolution imaging with mNeonGreen based on optimization of sample preparation, data acquisition and simple post-acquisition data processing. Application of our protocol enabled us to resolve the expected double band of bacterial cell division protein DivIVA, and to visualize that the chromosome organization protein ParB organized into sub-clusters instead of the typically observed diffraction-limited foci. We expect that our workflow allows a broad use of mNeonGreen for super-resolution microscopy, which is so far difficult to achieve

    Three-Dimensional Superconductivity in the Infinite-Layer Compound Sr_{0.9}La_{0.1}CuO_2 in Entire Region below TcT_c

    Full text link
    The infinite-layer compound ACuO2_{2} (A == alkaline-earth ions) is regarded as the most suitable material for exploring the fundamental nature of the CuO2_2 plane because it does not contain a charge-reservoir block, such as a rock-salt or a fluorite like block. We report that superconductivity in the infinite-layer compound Sr0.9_{0.9}La0.1_{0.1}CuO2_2 is of a three-dimensional nature, in contrast to the quasi two-dimensional superconducting behavior of all other cuprates. The key observation is that the cc-axis coherence length is longer than the cc-axis lattice constant even at zero temperature. This means that the superconducting order parameter of one CuO2_{2} plane overlaps with those of neighboring CuO2_{2} planes all the temperatures below the TcT_c. Among all cuprates, only the infinite-layer superconductor shows such a feature.Comment: 4 pages and 4 figure

    Synthesis and pinning properties of the infinite-layer superconductor Sr0.9La0.1CuO

    Full text link
    We report the high-pressure synthesis of the electron-doped infinite-layer superconductor Sr0.9La0.1CuO2 and its superconducting properties. A Rietveld analysis of X-ray powder diffraction data showed that, within the resolution of the measurement, the sample had purely an infinite-layer structure without any discernible impurities. The superconducting volume fraction and the transition width were greatly improved compared to those in previous reports. The irreversibility field line and the intragranular critical current density were much higher than those of La1.85Sr0.15CuO4 and Nd1.85Ce0.15CuO4. The stronger pinning behaviors are consistent with the strong interlayer coupling due to the short distance between CuO2 planes.Comment: Physica C (in press) 5 pages, 4 figur

    Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain.

    Get PDF
    Proteins containing a SPX domain are involved in phosphate (Pi) homeostasis, including Pi transport and adaptation to Pi deficiency. The SPX domain harbors a basic surface binding Pi at low affinity and inositol pyrophosphates (PP-InsPs) at high affinity. Genetic and biochemical studies revealed that PP-InsPs serve as ligands for the SPX domain. Residues in the PHO1 SPX domain involved in PP-InsPs binding are critical for its Pi export activity, and the interaction between SPX proteins and the PHR1 transcription factor, which results in PHR1 inactivation, is promoted by PP-InsPs. Changes in PP-InsPs levels in response to Pi deficiency may thus contribute to the adaptation of plants to stress via the modulation of the activity of SPX-containing proteins and their interactors. Modulating PP-InsP levels or the affinity/specificity of the SPX domain for PP-InsP could potentially be used to engineer crops to maintain high yield under reduced Pi fertilizer input

    Top A_FB at the Tevatron vs. charge asymmetry at the LHC in chiral U(1) flavor models with flavored Higgs doublets

    Full text link
    We consider the top forward-backward (FB) asymmetry at the Tevatron and top charge asymmetry at the LHC within chiral U(1)^\prime models with flavor-dependent U(1)^\prime charges and flavored Higgs fields, which were introduced in the ref. [65]. The models could enhance not only the top forward-backward asymmetry at Tevatron, but also the top charge asymmetry at LHC, without too large same-sign top pair production rates. We identify parameter spaces for the U(1)^\prime gauge boson and (pseudo)scalar Higgs bosons where all the experimental data could be accommodated, including the case with about 125 GeV Higgs boson, as suggested recently by ATLAS and CMS.Comment: 11 pages, 6 figures, figures and discussion adde

    DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load

    Get PDF
    Mitotic cell division increases tumour mutation burden and copy number load, predictive markers of the clinical benefit of immunotherapy. Cell division correlates also with genomic demethylation involving methylation loss in late-replicating partial methylation domains. Here we find that immunomodulatory pathway genes are concentrated in these domains and transcriptionally repressed in demethylated tumours with CpG island promoter hypermethylation. Global methylation loss correlated with immune evasion signatures independently of mutation burden and aneuploidy. Methylome data of our cohort (n = 60) and a published cohort (n = 81) in lung cancer and a melanoma cohort (n = 40) consistently demonstrated that genomic methylation alterations counteract the contribution of high mutation burden and increase immunotherapeutic resistance. Higher predictive power was observed for methylation loss than mutation burden. We also found that genomic hypomethylation correlates with the immune escape signatures of aneuploid tumours. Hence, DNA methylation alterations implicate epigenetic modulation in precision immunotherapy

    Tracking Performance of the Scintillating Fiber Detector in the K2K Experiment

    Full text link
    The K2K long-baseline neutrino oscillation experiment uses a Scintillating Fiber Detector (SciFi) to reconstruct charged particles produced in neutrino interactions in the near detector. We describe the track reconstruction algorithm and the performance of the SciFi after three years of operation.Comment: 24pages,18 figures, and 1 table. Preprint submitted to NI

    Search for sterile neutrino oscillation using RENO and NEOS data

    Full text link
    We present a reactor model independent search for sterile neutrino oscillation using 2\,509\,days of RENO near detector data and 180 days of NEOS data. The reactor related systematic uncertainties are significantly suppressed as both detectors are located at the same reactor complex of Hanbit Nuclear Power Plant. The search is performed by electron antineutrino\,(νe\overline{\nu}_e) disappearance between six reactors and two detectors with baselines of 294\,m\,(RENO) and 24\,m\,(NEOS). A spectral comparison of the NEOS prompt-energy spectrum with a no-oscillation prediction from the RENO measurement can explore reactor νe\overline{\nu}_e oscillations to sterile neutrino. Based on the comparison, we obtain a 95\% C.L. excluded region of 0.1<Δm412<70.1<|\Delta m_{41}^2|<7\,eV2^2. We also obtain a 68\% C.L. allowed region with the best fit of Δm412=2.41±0.03|\Delta m_{41}^2|=2.41\,\pm\,0.03\,\,eV2^2 and sin22θ14\sin^2 2\theta_{14}=0.08±\,\pm\,0.03 with a p-value of 8.2\%. Comparisons of obtained reactor antineutrino spectra at reactor sources are made among RENO, NEOS, and Daya Bay to find a possible spectral variation.Comment: 6 pages, 5 figures: This manuscript has been significantly revised by the joint reanalysis by RENO and NEOS Collaborations. (In the previous edition, the RENO collaboration used publicly available NEOS data to evaluate the expected neutrino spectrum at NEOS.
    corecore