103 research outputs found

    Automatic Severity Assessment of Dysarthric speech by using Self-supervised Model with Multi-task Learning

    Full text link
    Automatic assessment of dysarthric speech is essential for sustained treatments and rehabilitation. However, obtaining atypical speech is challenging, often leading to data scarcity issues. To tackle the problem, we propose a novel automatic severity assessment method for dysarthric speech, using the self-supervised model in conjunction with multi-task learning. Wav2vec 2.0 XLS-R is jointly trained for two different tasks: severity level classification and an auxilary automatic speech recognition (ASR). For the baseline experiments, we employ hand-crafted features such as eGeMaps and linguistic features, and SVM, MLP, and XGBoost classifiers. Explored on the Korean dysarthric speech QoLT database, our model outperforms the traditional baseline methods, with a relative percentage increase of 4.79% for classification accuracy. In addition, the proposed model surpasses the model trained without ASR head, achieving 10.09% relative percentage improvements. Furthermore, we present how multi-task learning affects the severity classification performance by analyzing the latent representations and regularization effect

    Speech Intelligibility Assessment of Dysarthric Speech by using Goodness of Pronunciation with Uncertainty Quantification

    Full text link
    This paper proposes an improved Goodness of Pronunciation (GoP) that utilizes Uncertainty Quantification (UQ) for automatic speech intelligibility assessment for dysarthric speech. Current GoP methods rely heavily on neural network-driven overconfident predictions, which is unsuitable for assessing dysarthric speech due to its significant acoustic differences from healthy speech. To alleviate the problem, UQ techniques were used on GoP by 1) normalizing the phoneme prediction (entropy, margin, maxlogit, logit-margin) and 2) modifying the scoring function (scaling, prior normalization). As a result, prior-normalized maxlogit GoP achieves the best performance, with a relative increase of 5.66%, 3.91%, and 23.65% compared to the baseline GoP for English, Korean, and Tamil, respectively. Furthermore, phoneme analysis is conducted to identify which phoneme scores significantly correlate with intelligibility scores in each language.Comment: Accepted to Interspeech 202

    The effects of team-based learning on nursing students’ learning performance with a focus on high-risk pregnancy in Korea: a quasi-experimental study

    Get PDF
    Purpose The purpose of this study was to examine the effects of team-based learning (TBL) on nursing students’ communication ability, problem-solving ability, self-directed learning, and nursing knowledge related to high-risk pregnancy nursing. Methods This quasi-experimental study used a nonequivalent control group pretest-posttest design. The participants were 91 nursing students allocated to an experimental group (n=45) and a control group (n=46). The experimental group received TBL lectures three times over the course of 3 weeks (100 minutes weekly) and the control group received instructor-centered lectures three times over the course of 3 weeks (100 minutes weekly). Data were collected by questionnaires from September 10 to November 8, 2019. Data were analyzed using the chi-square test, paired t-test, and independent t-test. Results After the intervention, the mean scores of problem-solving ability (t=–2.59, p=.011), self-directed learning (t=4.30, p<.001), and nursing knowledge (t=3.18, p=.002) were significantly higher in the experimental group than in the control group. No significant difference in communication ability was found between the experimental and control group (t=1.38, p=.171) Conclusion The TBL program was effective for improving nursing students’ problem-solving ability, self-directed learning, and nursing knowledge. Thus, TBL can be considered an effective teaching and learning method that can improve the learning outcomes of high-risk pregnancy nursing in women’s health nursing classes. The findings suggest that TBL will be helpful for future nursing students to develop the nursing expertise necessary for providing nursing care to high-risk pregnant women

    Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane

    Get PDF
    We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis

    Original Article

    Get PDF
    99 cases were operated while we could not use antibiotics. The author traced X-ray photos on paper and measured areas of the peeled cavities with a planimeter. Results were as follows. 1) 66 cases had increasing stage and the rates were more than 30 %. 2) Cases with good developments showed larger original areas (50〜100cm^2) and smaller increasing rates (less than 30 %). 3) Also their X-ray photos showed coinciding or almost coinciding lines of the apices of lungs and the bases of cavities, but we had to take precautions against suppuration when they showed a horizontal line several days after operation. 4) Most of too high degree of adhesion or thickning of pleura did not show good results. When we found a cord which we must manage with some procedures by pneumolysis we must attend to suppuration too. 5)We ought to resect 4th or 5th rib more than 20 cm and 5th or 4th several cm supplementary. 6) As a method of constriction we commend the INVAGI.NATION method. 7) The author noticed in a considerable number of cases that the areas of cavities increased again after they kept long balanced stages

    Atherosclerosis V, Proceeding of the Fifth International Symposium, A.M. Gotto, L.C. Smith, B. Allen, Spring Verlag, 1979(BOOK REVIEW)

    Get PDF
    Antiviral effect of micafungin on three strains of human rhinoviruses. H1HeLa cells were infected with human rhinovirus type 14 (A), 21 (B), or 71 (C) (100 CCID50) and immediately treated with indicated concentrations of micafungin. Three days after compound treatment antiviral activity was determined by the reduction of cytopathic effect using MTT assay. Cell viability of DMSO-treated cells was set to 0 % and that of uninfected cells was set to 100 %. (TIF 100 kb

    Ethanol extract of Angelica gigas inhibits croton oil-induced inflammation by suppressing the cyclooxygenase - prostaglandin pathway

    Get PDF
    The anti-inflammatory effects of an ethanol extract of Angelica gigas (EAG) were investigated in vitro and in vivo using croton oil-induced inflammation models. Croton oil (20 µg/mL) up-regulated mRNA expression of cyclooxygenase (COX)-I and COX-II in the macrophage cell line, RAW 264.7, resulting in the release of high concentrations of prostaglandin E2 (PGE2). EAG (1~10 µg/mL) markedly suppressed croton oil-induced COX-II mRNA expression and PGE2 production. Application of croton oil (5% in acetone) to mouse ears caused severe local erythema, edema and vascular leakage, which were significantly attenuated by oral pre-treatment with EAG (50~500 mg/kg). Croton oil dramatically increased blood levels of interleukin (IL)-6 and PGE2 without affecting tumor-necrosis factor (TNF)-α and nitric oxide (NO) levels. EAG pre-treatment remarkably lowered IL-6 and PGE2, but did not alter TNF-α or NO concentrations. These results indicate that EAG attenuates inflammatory responses in part by blocking the COX-PGE2 pathway. Therefore, EAG could be a promising candidate for the treatment of inflammatory diseases

    Rapid Multiplexed Proteomic Screening for Primary Immunodeficiency Disorders From Dried Blood Spots

    Get PDF
    Background: Primary immunodeficiency disorders (PIDD) comprise a group of life-threatening congenital diseases characterized by absent or impaired immune responses. Despite the fact that effective, curative treatments are available with optimal clinical outcomes when diagnosed early, newborn screening does not exist for the majority of these diseases due to the lack of detectable, specific biomarkers or validated methods for population-based screening. Peptide immunoaffinity enrichment coupled with selected reaction monitoring mass spectrometry (immuno-SRM) is a sensitive proteomic assay, involving antibody-mediated peptide capture, that allows for concurrent quantification of multiple analytes. This assay has promise for use in potential newborn screening of PIDDs that lead to diminished or absent target proteins in the majority of cases.Objective: To determine and evaluate if a multiplex assay based on immuno-SRM is able to reliably and precisely distinguish affected patients with X-linked agammaglobulinemia (XLA), Wiskott-Aldrich Syndrome (WAS), and CD3ϵ-associated severe combined immunodeficiency (SCID) from one another and from unaffected normal control dried blood spot (DBS) samples.Methods: We performed a blinded, multiplexed analysis of proteolytically-generated peptides from WASp, BTK, and CD3ϵ (for WAS, XLA, and SCID, respectively) in DBS samples from 42 PIDD patients, 40 normal adult controls, and 62 normal newborns. The peptide ATPase copper transporting protein (ATP7B) 1056 was simultaneously monitored for quality assurance purposes.Results: The immuno-SRM assays reliably quantified the target peptides in DBS and accurately distinguished affected patients from normal controls. Analysis of signature peptides found statistically significant reduction or absence of peptide levels in affected patients compared to control groups in each case (WASp and BTK: p = 0.0001, SCID: p = 0.05). Intra and inter-assay precision ranged from 11 to 22% and 11 to 43% respectively; linearity (1.39–2000 fmol peptide), and stability (≤ 0.09% difference in 72 h) showed high precision for the multiplexed assay. Inter-laboratory assay comparison showed high concordance for measured peptide concentrations, with R2 linearity ≥ 0.97 for the WASp 274, CD3ϵ 197, BTK 407, and ATP7B 1056 peptides.Conclusion: Immuno-SRM-based quantification of proteotypic peptides from WASp, BTK, and CD3ϵ in DBS distinguishes relevant PIDD cases from one another and from controls, raising the possibility of employing this approach for large-scale multiplexed newborn screening of selective PIDDs

    Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia

    Get PDF
    The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans
    corecore