9 research outputs found

    An Entirely New Molecular Glue for MOF Using Unusual Structural Transformation of a Coordination Polymer

    Get PDF
    In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in a great degree. This molecular glue, which can be utilized at MOF film fabrication, shows an entirely new way for film forming method unlike conventional methods

    An Entirely New Molecular Glue for MOF Using Unusual Structural Transformation of a Coordination Polymer

    Get PDF
    In this research, an entirely new molecular glue is reported. This ‘coordination polymer glue’ is synthesized from zinc metal and BDC-NPE(2,5-bis{4-[1-(4-nitrophenyl)ethylamino]butoxy}terephthalic acid). Molecular glue transforms from 1D coordination polymer to a 3D cross-linked framework, resulting in a phase change of solution to solid. The carboxylate group of this glue makes the preformed MOF bind to its framework. Therefore, when the solution of molecular glue is mixed with preformed MOF powder and heated, homogeneous and thin MOF film – MOF/ZnNPE film – is fabricated. The film is irrelevant to the kind of its substrate, and its thermal stability was enhanced in a great degree. This molecular glue, which can be utilized at MOF film fabrication, shows an entirely new way for film forming method unlike conventional methods

    Ionothermal Synthesis of Metal-Organic Framework

    Get PDF
    Ionothermal synthesis employs ionic liquids for synthesis of metal organic frameworks (MOFs) as solvent and template. The cations and anions of ionic liquids may be finely adjusted to produce a great variety of reaction environments and thus frameworks. Organisation of the structures synthesised from related ionic liquid combinations give rise to provocative chemical trends that may be used to predict future outcomes. Further analysis of their structures is possible by reducing the complex framework to its underlying topology, which by itself brings more precision to prediction. Through reduction, many seemingly different, but related classes of structures may be merged into larger groups and provide better understanding of the nanoscopic structures and synthesis conditions that gave rise to them. Ionothermal synthesis has promised to enable us to effectively plan the synthesis ahead for a given purpose. However, for its promise to be kept, several difficult limitations must be overcome, including the inseparable cations from the solvent that reside in the framework pore

    Registration of Dental Tomographic Volume Data and Scan Surface Data Using Dynamic Segmentation

    No full text
    Over recent years, computer-aided design (CAD) has become widely used in the dental industry. In dental CAD applications using both volumetric computed tomography (CT) images and 3D optical scanned surface data, the two data sets need to be registered. Previous works have registered volume data and surface data by segmentation. Volume data can be converted to surface data by segmentation and the registration is achieved by the iterative closest point (ICP) method. However, the segmentation needs human input and the results of registration can be poor depending on the segmented surface. Moreover, if the volume data contains metal artifacts, the segmentation process becomes more complex since post-processing is required to remove the metal artifacts, and initially positioning the registration becomes more challenging. To overcome these limitations, we propose a modified iterative closest point (MICP) process, an automatic segmentation method for volume data and surface data. The proposed method uses a bundle of edge points detected along an intensity profile defined by points and normal of surface data. Using this dynamic segmentation, volume data becomes surface data which can be applied to the ICP method. Experimentally, MICP demonstrates fine results compared to the conventional registration method. In addition, the registration can be completed within 10 s if down sampling is applied

    3D Reconstruction Using 3D Registration-Based ToF-Stereo Fusion

    No full text
    Depth sensing is an important issue in many applications, such as Augmented Reality (AR), eXtended Reality (XR), and Metaverse. For 3D reconstruction, a depth map can be acquired by a stereo camera and a Time-of-Flight (ToF) sensor. We used both sensors complementarily to improve the accuracy of 3D information of the data. First, we applied a generalized multi-camera calibration method that uses both color and depth information. Next, depth maps of two sensors were fused by 3D registration and reprojection approach. Then, hole-filling was applied to refine the new depth map from the ToF-stereo fused data. Finally, the surface reconstruction technique was used to generate mesh data from the ToF-stereo fused pointcloud data. The proposed procedure was implemented and tested with real-world data and compared with various algorithms to validate its efficiency

    Observation of spin-polarized Anderson state around charge neutral point in graphene with Fe-clusters

    Get PDF
    The pristine graphene described with massless Dirac fermion could bear topological insulator state and ferromagnetism via the band structure engineering with various adatoms and proximity effects from heterostructures. In particular, topological Anderson insulator state was theoretically predicted in tight-binding honeycomb lattice with Anderson disorder term. Here, we introduced physi-absorbed Fe-clusters/adatoms on graphene to impose exchange interaction and random lattice disorder, and we observed Anderson insulator state accompanying with Kondo effect and field-induced conducting state upon applying the magnetic field at around a charge neutral point. Furthermore, the emergence of the double peak of resistivity at nu = 0 state indicates spin-splitted edge state with high effective exchange field (>70T). These phenomena suggest the appearance of topological Anderson insulator state triggered by the induced exchange field and disorder
    corecore