223 research outputs found

    Centroidal Momentum Analysis for Defining a Stability Index for Human-Exoskeleton Interactive Walking : Perturbation Detection in Human Gait

    Get PDF
    Recently, exoskeletons have been in the spotlight as many studies demonstrated the effectiveness of the exoskeletons as a means that enables to not only resolve long-standing issues such as increase of societal burden for the care of ageing populations but also augments productivity in several fields, such as rehabilitation and industrial fields. In particular, lower limb exoskeletons have attracted the medical field, especially related to the ageing society due to its impact on augmentation and recovery of walking capability which is one of the core determinants of independent daily living. For practical use of the lower limb exoskeletons in real environments, however, there are still several issues to be resolved. One of them is how to manage balance of human walking supported by the exoskeleton, in other words, how to monitor walking stability of a system combined with human and exoskeleton and maintain (or recover) the system balance when the user meets unpredicted disturbances, and thus to avoid falls. The former is a rationale of the study and this paper deals with a ‘stability index’, referred to as a kind of measure to monitor the actual (in)stability state during walking. The proposed stability index is based on the Centroidal Momentum (CM) that consists of linear and angular momenta at the Center of Mass (CoM). CM is a fundamental parameter used to describe physical motion of a system in classical mechanics, and it has been studied widely in biomechanics and bipedal robot fields over the last decade as it, specifically angular momentum-based analysis, offers important clues on how humans maintain balance during walking as well as facilitates postural balance control of humanoid robots in standing. As an extension of this context, in our previous work, we analyzed CM behavior during human walking under perturbations, specifically lateral perturbations applied to the pelvis. As a continuation of the study, in this paper, we examine whether CM could be used as the stability index to detect the perturbations as well as an initial loss of balance. In other words, a perturbation detection method on the basis of calculation of CM while waking is presented. In the method, variation of CM patterns between unperturbed and perturbed walking plays a crucial role in detecting perturbations. The method has been evaluated with experimental data of human walking and results show that the method is capable of detecting moderate and strong perturbations determined by combination of diverse durations and magnitudes of disturbance force. Average detection time obtained was about 334 msec. This study was carried out in the context of the EU FP7 project BALANCE that aims at supporting the function of maintaining postural balance directly through a leg exoskeleton. For this purpose CM-based stability index to be developed and related findings will be extended to the exoskeleton cooperating with a human and assessed on performance inEuropean Commission FP

    Dispositivo Robótico Multifuncional para la Rehabilitación de las Extremidades Superiores

    Get PDF
    This work presents an innovative rehabilitation device called Universal Haptic Pantograph (UHP). This robot, thanks to its multi-configurable structure allows the rehabilitation of all joints of the upper limb with a single mechanical device. In addition, it has been designed with the ability to perform different assistive and resistive tasks, allowing its adaptation to the recovery status of the patient. Finally, a support software, the Telereha generates a virtual reality environment, facilitating the execution of the exercise, while increasing the motivation of the patient. For the correct execution of the rehabilitation tasks the proposed algorithms have been implemented in real time. Also, different experimental tests have been carried out. Observing the results, it is concluded that the UHP rehabilitation robot works correctly with different rehabilitation tasks.Este trabajo ha sido parcialmente financiado por el Ministerio de Economía y Competitividad MINECO & FEDER en el marco del proyecto DPI-2012-32882, así como por las becas PRE-2014-1-152 del Gobierno Vasco y BES-2013-066142 del Ministerio de Economía y Competitividad, el proyecto IT914- 16 del Gobierno Vasco, el proyecto PPG17/56 de la UPV/EHU, por Euskampus Fundazioa, por FIK y por el Ministerio de Ciencia e Innovación en el marco del proyecto PDI-020100-2009- 21

    PIAAC Bibliography - 2008-2019

    Get PDF
    In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robot-mediated rehabilitation trainings

    Virtual Sensors For Advanced Controllers In Rehabilitation Robotics

    Get PDF
    In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.This work was supported in part by the Basque Country Governments (GV/EJ) under grant PRE-2014-1-152, UPV/EHU's PPG17/56 project, Basque Country Governments IT914-16 project, Spanish Ministry of Economy and Competitiveness' MINECO & FEDER inside DPI2017-82694-R project, Euskampus, FIK and Spanish Ministry of Science and Innovation PDI-020100-2009-21 project

    Kinematical and dynamical modelling of a multipurpose upper limbs rehabilitation robot

    Get PDF
    Knowing accurate model of a system is always beneficial to design a robust and safe control while allowing reduction of sensors-related cost as the system outputs are predictable using the model. In this context, this paper addresses the kinematical and dynamical model identification of the multipurpose rehabilitation robot, Universal Haptic Pantograph (UHP), and present experimental validations of the identified models. The UHP is a Pantograph based innovative robot actuated by two SEAs (Series Elastic Actuator), aiming at training impaired upper limbs after a stroke. This novel robot, thanks to its lockable/unlockable joints, can change its mechanical structure so that it enables stroke patient to perform different training exercises of the shoulder, elbow and wrist. This work focuses on the ARM mode, which is a training mode used to rehabilitate elbow and shoulder. The kinematical model of UHP is identified based on the loop vector equations, while the dynamical model is derived based on the Lagrangian formulation. To demonstrate the accuracy of the models, several experimental tests were performed. The results reveal that the mean position error between estimated values with the model and actual measured values stays in 3 mm (less than 2% of the maximum motion range). Moreover, the error between estimated and measured interaction force is smaller than 10% of maximum force range. So, the developed models can be adopted to estimate motion and force of UHP as well as control it without the need of additional sensors such as a force sensor, resulting in the reduction of total robot cost.This work was supported in part by the Basque Country Governments (GV/EJ) under grant PRE-2014-1-152, UPV/EHU’s PPG17/56 project, Basque Country Governments IT914-16 project, Spanish Ministry of Economy and Competitiveness’ MINECO & FEDER inside DPI2012-32882 projects, Spanish Ministry of Economy and Competitiveness BES-2013-066142 grant, Euskampus, FIK

    Inclusive and seamless control framework for safe robot-mediated therapy for upper limbs rehabilitation

    Get PDF
    Robot-based rehabilitation requires not only the use of a suitable robot, but also an optimal strategy to guarantee that the interaction forces with the patient fit his or her impairment level. In this work, an inclusive and seamless control framework for upper limb rehabilitation robots is presented and validated. The proposed control framework involves 1) a complete set of training modes (assistive, corrective and resistive) that can be adapted to the needs of the different states of the patient’s recovery, and 2) three different advanced controllers (position, force, impedance) to track safely the force and motion references defined by the aforementioned training modes. In addition, the proposed framework allows one to tune the parameters critical to the safety of the user, such as the maximum interaction forces or the maximum speed of the robot movement. In order to validate the proposed control framework, a set of experiments have been carried out in the Universal Haptic Pantograph (UHP) upperlimb rehabilitation robot. Results show that the proposed control framework for robot-mediated therapy works properly in terms of adaptability, robustness, and safety, which are crucial factors for use with patients.This work was supported in part by the Basque Country Governments (GV/EJ) under grant PRE-2014-1-152, UPV/EHU’s PPG17/56 project, Basque Country Governments IT914-16 project, Spanish Ministry of Economy and Competitiveness’ MINECO & FEDER inside DPI2017- 82694-R project, Euskampus, FIK and Spanish Ministry of Science and Innovation PDI-020100-2009-21 project

    L-Asparaginase delivered by Salmonella typhimurium suppresses solid tumors

    Get PDF
    Bacteria can be engineered to deliver anticancer proteins to tumors via a controlled expression system that maximizes the concentration of the therapeutic agent in the tumor. L-asparaginase (L-ASNase), which primarily converts asparagine to aspartate, is an anticancer protein used to treat acute lymphoblastic leukemia. In this study, Salmonellae were engineered to express L-ASNase selectively within tumor tissues using the inducible araBAD promoter system of Escherichia coli. Antitumor efficacy of the engineered bacteria was demonstrated in vivo in solid malignancies. This result demonstrates the merit of bacteria as cancer drug delivery vehicles to administer cancer-starving proteins such as L-ASNase to be effective selectively within the microenvironment of cancer tissue
    corecore