429 research outputs found

    New Phase Induced by Pressure in the Iron-Arsenide Superconductor K-Ba122

    Full text link
    The electrical resistivity rho of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured in applied pressures up to 2.6 GPa for four underdoped samples, with x = 0.16, 0.18, 0.19 and 0.21. The antiferromagnetic ordering temperature T_N, detected as a sharp anomaly in rho(T), decreases linearly with pressure. At pressures above around 1.0 GPa, a second sharp anomaly is detected at a lower temperature T_0, which rises with pressure. We attribute this second anomaly to the onset of a phase that causes a reconstruction of the Fermi surface. This new phase expands with increasing x and it competes with superconductivity. We discuss the possibility that a second spin-density wave orders at T_0, with a Q vector distinct from that of the spin-density wave that sets in at T_N.Comment: Two higher K concentrations were added, revealing a steady expansion of the new phase in the T-P phase diagra

    GOODS-HerschelHerschel: identification of the individual galaxies responsible for the 80-290μ\mum cosmic infrared background

    Get PDF
    We propose a new method of pushing HerschelHerschel to its faintest detection limits using universal trends in the redshift evolution of the far infrared over 24μ\mum colours in the well-sampled GOODS-North field. An extension to other fields with less multi-wavelength information is presented. This method is applied here to raise the contribution of individually detected HerschelHerschel sources to the cosmic infrared background (CIRB) by a factor 5 close to its peak at 250μ\mum and more than 3 in the 350μ\mum and 500μ\mum bands. We produce realistic mock HerschelHerschel images of the deep PACS and SPIRE images of the GOODS-North field from the GOODS-HerschelHerschel Key Program and use them to quantify the confusion noise at the position of individual sources, i.e., estimate a "local confusion noise". Two methods are used to identify sources with reliable photometric accuracy extracted using 24μ\mum prior positions. The clean index (CI), previously defined but validated here with simulations, which measures the presence of bright 24μ\mum neighbours and the photometric accuracy index (PAI) directly extracted from the mock HerschelHerschel images. After correction for completeness, thanks to our mock HerschelHerschel images, individually detected sources make up as much as 54% and 60% of the CIRB in the PACS bands down to 1.1 mJy at 100μ\mum and 2.2 mJy at 160μ\mum and 55, 33, and 13% of the CIRB in the SPIRE bands down to 2.5, 5, and 9 mJy at 250μ\mum, 350μ\mum, and 500μ\mum, respectively. The latter depths improve the detection limits of HerschelHerschel by factors of 5 at 250μ\mum, and 3 at 350μ\mum and 500μ\mum as compared to the standard confusion limit. Interestingly, the dominant contributors to the CIRB in all HerschelHerschel bands appear to be distant siblings of the Milky Way (zz\sim0.96 for λ\lambda<<300μ\mum) with a stellar mass of MM_{\star}\sim9×\times1010^{10}M_{\odot}.Comment: 22 pages, 16 figures. Accepted for publication by Astronomy and Astrophysic

    The WiFeS S7 AGN survey: Current status and recent results on NGC 6300

    Full text link
    The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) is a targeted survey probing the narrow-line regions (NLRs) of a representative sample of ~140 nearby (z<0.02) Seyfert galaxies by means of optical integral field spectroscopy. The survey is based on a homogeneous data set observed using the Wide Field Spectrograph WiFeS. The data provide a 25x38 arcsec2^2 field-of-view around the galaxy centre at typically ~1.5 arcsec spatial resolution and cover a wavelength range between ~3400 - 7100 A˚\AA at spectral resolutions of ~100 km s1^{-1} and ~50 km s1^{-1} in the blue and red parts, respectively. The survey is primarily designed to study gas excitation and star formation around AGN, with a special focus on the shape of the AGN ionising continuum, the interaction between radio jets and the NLR gas, and the nature of nuclear LINER emission. We provide an overview of the current status of S7-based results and present new results for NGC 6300.Comment: 5 pages, 1 figure, Refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF - Observatory of Capodimonte, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    Interaction between vortices in models with two order parameters

    Get PDF
    The interaction energy and force between widely separated strings is analyzed in a field theory having applications to superconducting cosmic strings, the SO(5) model of high-temperature superconductivity, and solitons in nonlinear optics. The field theory has two order parameters, one of which is broken in the vacuum (giving rise to strings), the other of which is unbroken in the vacuum but which could nonetheless be broken in the core of the string. If this does occur, there is an effect on the energetics of widely separated strings. This effect is important if the length scale of this second order parameter is longer than that of the other fields in the problem.Comment: 11 pages, 3 figures. Minor changes in the text. Accepted for publication in Phys. Rev.

    Combined CO & Dust Scaling Relations of Depletion Time and Molecular Gas Fractions with Cosmic Time, Specific Star Formation Rate and Stellar Mass

    Get PDF
    We combine molecular gas masses inferred from CO emission in 500 star forming galaxies (SFGs) between z=0 and 3, from the IRAM-COLDGASS, PHIBSS1/2 and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion time scale (tdepl) and gas to stellar mass ratio (Mmolgas/M*) of SFGs near the star formation main-sequence with redshift, specific star formation rate (sSFR) and stellar mass (M*). The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO-H2 mass conversion factor varies little within 0.6dex of the main sequence (sSFR(ms,z,M*)), and less than 0.3dex throughout this redshift range. This study builds on and strengthens the results of earlier work. We find that tdepl scales as (1+z)^-0.3 *(sSFR/sSFR(ms,z,M*))^-0.5, with little dependence on M*. The resulting steep redshift dependence of Mmolgas/M* ~(1+z)^3 mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M* are driven by the flattening of the SFR-M* relation. Throughout the redshift range probed a larger sSFR at constant M* is due to a combination of an increasing gas fraction and a decreasing depletion time scale. As a result galaxy integrated samples of the Mmolgas-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine Mmolgas with an accuracy of 0.1dex in relative terms, and 0.2dex including systematic uncertainties.Comment: ApJ accepte

    Relation Between Stellar Mass and Star Formation Activity in Galaxies

    Get PDF
    For a mass-selected sample of 66544 galaxies with photometric redshifts from the Cosmic Evolution Survey (COSMOS), we examine the evolution of star formation activity as a function of stellar mass in galaxies. We estimate the cosmic star formation rates (SFR) over the range 0.2 < z < 1.2, using the rest-frame 2800 A flux (corrected for extinction). We find the mean SFR to be a strong function of the galactic stellar mass at any given redshift, with massive systems (log (M/M(Sun)) > 10.5) contributing less (by a factor of ~ 5) to the total star formation rate density (SFRD). Combining data from the COSMOS and Gemini Deep Deep Survey (GDDS), we extend the SFRD-z relation as a function of stellar mass to z~2. For massive galaxies, we find a steep increase in the SFRD-z relation to z~2; for the less massive systems, the SFRD which also increases from z=0 to 1, levels off at z~1. This implies that the massive systems have had their major star formation activity at earlier epochs (z > 2) than the lower mass galaxies. We study changes in the SFRDs as a function of both redshift and stellar mass for galaxies of different spectral types. We find that the slope of the SFRD-z relation for different spectral type of galaxies is a strong function of their stellar mass. For low and intermediate mass systems, the main contribution to the cosmic SFRD comes from the star-forming galaxies while, for more massive systems, the evolved galaxies are the most dominant population.Comment: 34 pages; 8 figures; Accepted for publication in Ap

    No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z~2 in CANDELS / 3D-HST

    Get PDF
    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3<z<2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that, despite being being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z~2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z~2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z~1.85 - whether violent disk instabilities or secular processes - are as efficient in smooth galaxies as they are in clumpy galaxies.Comment: ApJ accepted. 17 pages, 17 figure
    corecore