46 research outputs found

    Efficacy and Tolerability of Peginterferon Alpha Plus Ribavirin in the Routine Daily Treatment of Chronic Hepatitis C Patients in Korea: A Multi-Center, Retrospective Observational Study

    Get PDF
    Background/Aims: We aimed to evaluate the efficacy and safety of peginterferon plus ribavirin for chronic hepatitis C (CHC) patients under real life setting in Korea. Methods: We retrospectively analyzed the medical records of 758 CHC patients treated with peginterferon plus ribavirin between 2000 and 2008 from 14 university hospitals in the Gyeonggi-Incheon area in Korea. Results: Hepatitis C virus (HCV) genotype 1 was detected in 61.2% of patients, while genotype 2 was detected in 35.5%. Baseline HCV RNA level was >= 6x10(5) IU/mL in 51.6% of patients. The sustained virological response (SVR) rate was 59.6% regardless of genotype; 53.6% in genotype 1 and 71.4% in genotype 2/3. On multivariate analysis, male gender (p=0.011), early virological response (p<0.001), genotype 2/3 (p<0.001), HCV RNA <6x10(5) IU/mL (p=0.005) and adherence to the drug >80% of the planned dose (p<0.001) were associated with SVR. The rate of premature discontinuation was 35.7%. The main reason for withdrawal was intolerance to the drug due to common adverse events or cytopenia (48.2%). Conclusions: Our data suggest that the efficacy of peginterferon and ribavirin therapy in Koreans is better in Koreans than in Caucasians for the treatment of CHC, corroborating previous studies that have shown the superior therapeutic efficacy of this regimen in Asians.This study was supported by the Korean Association for the Study of the Liver in 2009

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Verification and mitigation of ion migration in perovskite solar cells

    No full text
    Metal halide perovskite materials have shown versatile functionality for a variety of optoelectronic devices. Remarkable progress in device performance has been achieved for last few years. Their high performance in combination with low production cost puts the perovskite optoelectronics under serious consideration for possible commercialization. A fundamental question that remains unanswered is whether these materials can sustain their optoelectronic properties during harsh and prolonged operational conditions of the devices. A major concern stems from an unprecedented and unique feature of perovskite materials, which is migration of ionic species (or charged defects). Recent studies have indicated that the ion migration might be a limit factor for long-term operational stability of the devices. In this regard, herein we have reviewed important studies on discovery, quantification, and mitigation of the ion migration process in metal halide perovskite materials. A possible emerging application using the ion migration is also briefly introduced

    All-Inorganic Bismuth Halide Perovskite-Like Materials A(3)Bi(2)I(9) and A(3)Bi(1.8)Na(0.2)I(8.6) (A = Rb and Cs) for Low-Voltage Switching Resistive Memory

    No full text
    As silicon-based metal oxide semiconductor field effect transistors get closer to their scaling limit, the importance of resistive random-access memory devices increases due to their low power consumption, high endurance and retention performance, scalability, and fast switching speed. In the last couple of years, organic-inorganic lead halide perovskites have been used for resistive switching applications, where they outperformed conventional metal oxides in terms of large on/off ratio and low power consumption. However, there were scarce reports on lead-free perovskites for such applications. In this report, we prepared lead-free Au/A(3)Bi(2)I(9)/Pt/Ti/SiO2/Si (A is either Cs+ or Rb+) devices and tested their resistive switching characteristics. They showed a forming step prior to repeating switching, low operating voltage (0.09 V for Rb3Bi2I9 and 0.1 V for Cs3Bi2I9), large on/off ratio (>10(7)), relatively high endurance (200 cycles for Rb3Bi2I9 and 400 cycles for Cs3Bi2I9 cycles), and high retention (1000 s). Such low voltage could be explained by grain boundary-modulated ion drift. Difference in endurance was speculated to be due to the difference in the surface roughness of films because Cs3Bi2I9 films are smoother. To get rid of the forming step, 10% of the Bi3+ cations were substituted with Na+ cations. However, this method only worked on Rb-based structures. This phenomenon was explained by the defect formation energy, which can only be negative in a corner-sharing Rb3Bi2I9 structure compared to a face-sharing octahedral Cs3Bi2I9 structure. As a result, the forming step was removed, and 100 cycles endurance and 1000 s retention performance were obtained. Similarly, the lower endurance is suspected to be due to the poor surface quality of the film.11Nsciescopu
    corecore