2,234 research outputs found

    Discontinuous Galerkin vs. IE Method for Electromagnetic Scattering from Composite Metallic and Dielectric Structures

    Get PDF
    In this paper, an efficient volume surface integral equation (VSIE) method with nonconformal discretization is developed for the analysis of electromagnetic scattering from composite metallic and dielectric (CMD) structures. This VSIE scheme utilizes curved tetrahedral (triangular) elements for volume (surface) modeling and the associated CRWG (CSWG) basis functions for volume current (surface) current modeling. Further, a discontinuous Galerkin (DG) volume integral equation (VIE) method and a DG surface integral equation (SIE) approach are adopted for dielectric and metallic parts, respectively, which allow both conformal and nonconformal volume/surface discretization improving meshing flexibility considerably. Numerical results are provided to demonstrate the accuracy, efficiency, and flexibility of our scheme

    Language Models Can Improve Event Prediction by Few-Shot Abductive Reasoning

    Full text link
    Large language models have shown astonishing performance on a wide range of reasoning tasks. In this paper, we investigate whether they could reason about real-world events and help improve the prediction performance of event sequence models. We design LAMP, a framework that integrates a large language model in event prediction. Particularly, the language model performs abductive reasoning to assist an event sequence model: the event model proposes predictions on future events given the past; instructed by a few expert-annotated demonstrations, the language model learns to suggest possible causes for each proposal; a search module finds out the previous events that match the causes; a scoring function learns to examine whether the retrieved events could actually cause the proposal. Through extensive experiments on several challenging real-world datasets, we demonstrate that our framework -- thanks to the reasoning capabilities of large language models -- could significantly outperform the state-of-the-art event sequence models.Comment: NeurIPS 2023 camera-read

    Obstetric complications in women with polycystic ovary syndrome: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of childbearing age. The risk of pregnancy and neonatal complications in women with PCOS is debatable. In order to determine the risk of pregnancy and neonatal complications, evidence regarding these risks was examined. METHODS: Literature searches were performed in the electronic databases MEDLINE, EMBASE, and CENTRAL based on the established strategy and eligible tries were included according to inclusion and exclusion criteria. A systematic literature review looking at rates of gestational diabetes mellitus (GDM), pregnancy-induced hypertension (PIH), preeclampsia, premature delivery, neonatal birth weight, caesarean section and admission to a neonatal intensive care unit (NICU) was conducted in women with PCOS. Pregnancy outcomes between women with PCOS versus controls were included. Sensitivity analyses were performed to determine the reliability of the available evidence and to validate the results. The study was performed with the approval of the ethics committee of the First Affiliated Hospital of Guangxi Medical University. RESULTS: A total of 27studies, involving 4982 women with PCOS and 119692 controls were eligible for the meta-analysis. Women with PCOS demonstrated a significantly higher risk of developing GDM (OR3.43; 95% CI: 2.49–4.74), PIH (OR3.43; 95% CI: 2.49–4.74), preeclampsia (OR2.17; 95% CI: 1.91–2.46), preterm birth (OR1.93; 95%CI: 1.45–2.57), caesarean section (OR 1.74; 95% CI: 1.38–2.11) compared to controls. Their babies had a marginally significant lower birth weight (WMD −0.11g; 95%CI: -0.19 – -0.03), and higher risk of admission to NICU (OR 2.32; 95% CI: 1.40–3.85) compared to controls. CONCLUSIONS: Women with PCOS have increased risk of adverse pregnancy and neonatal complications. It is necessary to establish guidelines for supervision during pregnancy and parturition to prevent these complications

    Quantum theory of electronic double-slit diffraction

    Full text link
    The phenomena of electron, neutron, atomic and molecular diffraction have been studied by many experiments, and these experiments are explained by some theoretical works. In this paper, we study electronic double-slit diffraction with quantum mechanical approach. We can obtain the results: (1) When the slit width aa is in the range of 3λ∼50λ3\lambda\sim 50\lambda we can obtain the obvious diffraction patterns. (2) when the ratio of d+aa=n(n=1,2,3,⋅⋅⋅)\frac{d+a}{a}=n (n=1, 2, 3,\cdot\cdot\cdot), order 2n,3n,4n,⋅⋅⋅2n, 3n, 4n,\cdot\cdot\cdot are missing in diffraction pattern. (3)When the ratio of d+aa≠n(n=1,2,3,⋅⋅⋅)\frac{d+a}{a}\neq n (n=1, 2, 3,\cdot\cdot\cdot), there isn't missing order in diffraction pattern. (4) We also find a new quantum mechanics effect that the slit thickness cc has a large affect to the electronic diffraction patterns. We think all the predictions in our work can be tested by the electronic double-slit diffraction experiment.Comment: 9pages, 14figure

    Power Bus Noise Reduction using Power Islands in Printed Circuit Board Designs

    Get PDF
    Power islands are often used to isolate devices that put noise on a power bus from devices that may be susceptible to power bus noise. At high frequencies however, the effectiveness of these islands depends on the implementation. This paper experimentally investigates the effectiveness of different power island structures at frequencies up to 3 GHz

    Plasticity of DNA methylation in mouse T cell activation and differentiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating CD4<sup>+ </sup>T helper cells are activated through interactions with antigen presenting cells and undergo differentiation into specific T helper cell subsets depending on the type of antigen encountered. In addition, the relative composition of the circulating CD4<sup>+ </sup>T cell population changes as animals mature with an increased percentage of the population being memory/effector type cells.</p> <p>Results</p> <p>Here, we report on the highly plastic nature of DNA methylation at the genome-wide level as T cells undergo activation, differentiation and aging. Of particular note were the findings that DNA demethylation occurred rapidly following T cell activation and that all differentiated T cell populations displayed lower levels of global methylation than the non-differentiated population. In addition, T cells from older mice had a reduced level of DNA methylation, most likely explained by the increase in the memory/effector cell fraction. Although significant genome-wide changes were observed, changes in DNA methylation at individual genes were restricted to specific cell types. Changes in the expression of enzymes involved in DNA methylation and demethylation reflect in most cases the changes observed in the genome-wide DNA methylation status.</p> <p>Conclusion</p> <p>We have demonstrated that DNA methylation is dynamic and flexible in CD4+ T cells and changes rapidly both in a genome-wide and in a targeted manner during T cell activation, differentiation. These changes are accompanied by parallel changes in the enzymatic complexes that have been implicated in DNA methylation and demethylation implying that the balance between these opposing activities may play a role in the maintaining the methylation profile of a given cell type but also allow flexibility in a cell population that needs to respond rapidly to environmental signals.</p

    Changes in the Expression of miR-381 and miR-495 Are Inversely Associated with the Expression of the MDR1 Gene and Development of Multi-Drug Resistance

    No full text
    Multidrug resistance (MDR) frequently develops in cancer patients exposed to chemotherapeutic agents and is usually brought about by over-expression of P-glycoprotein (P-gp) which acts as a drug efflux pump to reduce the intracellular concentration of the drug(s). Thus, inhibiting P-gp expression might assist in overcoming MDR in cancer chemotherapy. MiRNAome profiling using next-generation sequencing identified differentially expressed microRNAs (miRs) between parental K562 cells and MDR K562 cells (K562/ADM) induced by adriamycin treatment. Two miRs, miR-381 and miR-495, that were strongly down-regulated in K562/ADM cells, are validated to target the 3'-UTR of the MDR1 gene. These miRs are located within a miR cluster located at chromosome region 14q32.31, and all miRs in this cluster appear to be down-regulated in K562/ADM cells. Functional analysis indicated that restoring expression of miR-381 or miR-495 in K562/ADM cells was correlated with reduced expression of the MDR1 gene and its protein product, P-gp, and increased drug uptake by the cells. Thus, we have demonstrated that changing the levels of certain miR species modulates the MDR phenotype in leukemia cells, and propose further exploration of the use of miR-based therapies to overcome MDR.The authors would like to declare that we received funding from a commercial source, i.e. Bioplatforms Australia. This does not alter the authors' adherence to all PLOS ONE policies on sharing data and materials

    Clustering and Sharing Incentives in BitTorrent Systems

    Get PDF
    Peer-to-peer protocols play an increasingly instrumental role in Internet content distribution. Consequently, it is important to gain a full understanding of how these protocols behave in practice and how their parameters impact overall performance. We present the first experimental investigation of the peer selection strategy of the popular BitTorrent protocol in an instrumented private torrent. By observing the decisions of more than 40 nodes, we validate three BitTorrent properties that, though widely believed to hold, have not been demonstrated experimentally. These include the clustering of similar-bandwidth peers, the effectiveness of BitTorrent's sharing incentives, and the peers' high average upload utilization. In addition, our results show that BitTorrent's new choking algorithm in seed state provides uniform service to all peers, and that an underprovisioned initial seed leads to the absence of peer clustering and less effective sharing incentives. Based on our observations, we provide guidelines for seed provisioning by content providers, and discuss a tracker protocol extension that addresses an identified limitation of the protocol

    Interface engineering of domain structures in BiFeO3 thin films

    Get PDF
    A wealth of fascinating phenomena have been discovered at the BiFeO3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO3 films. Moreover, we are able to study the switching behavior of the first time obtained periodic 109° stripe domains with a thick bottom electrode. Besides, the precise controlling of pure 71° and 109° periodic stripe domain walls enable us to make a clear demonstration that the exchange bias in the ferromagnet/BiFeO3 system originates from 109° domain walls. Our findings provide future directions to study the room temperature electric field control of exchange bias and open a new pathway to explore the room temperature multiferroic vortices in the BiFeO3 system
    • …
    corecore