Peer-to-peer protocols play an increasingly instrumental role in Internet
content distribution. Consequently, it is important to gain a full
understanding of how these protocols behave in practice and how their
parameters impact overall performance. We present the first experimental
investigation of the peer selection strategy of the popular BitTorrent protocol
in an instrumented private torrent. By observing the decisions of more than 40
nodes, we validate three BitTorrent properties that, though widely believed to
hold, have not been demonstrated experimentally. These include the clustering
of similar-bandwidth peers, the effectiveness of BitTorrent's sharing
incentives, and the peers' high average upload utilization. In addition, our
results show that BitTorrent's new choking algorithm in seed state provides
uniform service to all peers, and that an underprovisioned initial seed leads
to the absence of peer clustering and less effective sharing incentives. Based
on our observations, we provide guidelines for seed provisioning by content
providers, and discuss a tracker protocol extension that addresses an
identified limitation of the protocol