-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Clustering and Sharing Incentives in BitTorrent Systems
Arnaud Legout, Nikitas Liogkas, Eddie Kohler, Lixia Zhang

» To cite this version:

Arnaud Legout, Nikitas Liogkas, Eddie Kohler, Lixia Zhang. Clustering and Sharing Incentives in
BitTorrent Systems. ACM SIGMETRICS’2007, Jun 2007, California. inria-00137444v2

HAL Id: inria-00137444
https://hal.inria.fr /inria-00137444v2
Submitted on 28 Mar 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/50392485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00137444v2
https://hal.archives-ouvertes.fr

INnria-00137444, version 2 - 28 Mar 2007

Clustering and Sharing Incentives in BitTorrent Systems

Arnaud Legout
LLN.R.LA.
Sophia Antipolis, France
arnaud.legout@sophia.inria.fr

ABSTRACT

Peer-to-peer protocols play an increasingly instrumemntalin In-
ternet content distribution. It is therefore important tirga com-
plete understanding of how these protocols behave in peaatid
how their operating parameters affect overall system pedioce.
This paper presents the first detailed experimental iryatstin of
the peer selection strategy in the popular BitTorrent moltto By
observing more than 40 nodes in instrumented private ttsrere
validate three protocol properties that, though believeddild,
have not been previously demonstrated experimentally:chie
tering of similar-bandwidth peers, the effectiveness d@T&irent’s
sharing incentives, and the peers’ high uplink utilizatiém addi-
tion, we observe that BitTorrent’s modified choking algamit in
seed state provides uniform service to all peers, and thamnan
derprovisioned initial seed leads to absence of peer clogtand
less effective sharing incentives. Based on our resultgnaeide
guidelines for seed provisioning by content providers, disduss
a tracker protocol extension that addresses an identifigithtion
of the protocol.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.4 Computer-Communication Networks]: Distributed
Systems; C.4Rerformance of Systemp

General Terms
Algorithms, Measurement, Performance

Keywords

BitTorrent, choking algorithm, clustering, incentiveges provi-
sioning

1. INTRODUCTION

In just a few years, peer-to-peer content distribution faae
to generate a significant portion of the total Internet tma@].
The widespread adoption of such protocols for deliveringdalata

(©ACM, 2007. This is the author’s version of the work. It is pexbt
here by permission of ACM for your personal use. Not for redis
tribution. The definitive version was published in Proc. GZM
SIGMETRICS’07, June 12-16, 2007, San Diego, CaliforniaAUS

Nikitas Liogkas, Eddie Kohler,

Lixia Zhang
University of California, Los Angeles
Los Angeles, CA USA
{nikitas, kohler, lixigd @cs.ucla.edu

volumes in a global scale is arguably due to their scalgtalid ro-
bustness properties. Understanding the mechanisms fhat tife
performance of such protocols and overcoming the existiogts
comings will ensure the continued success of peer-to-paterde-
livery. To that end, this paper presents a detailed expertimhstudy
of the peer selection strategy in BitTorrent, one of the rpogular
peer-to-peer content distribution protocols.

Recently, researchers have formulated analytical modelthé
problem of efficient data exchange among peers, and measotem
studies using actual download traces have attempted toligfd
into the success of BitTorrent. However, certain propsiethese
studies have interfered with their accurate evaluatioheftynam-
ics of BitTorrent algorithms and their impact on overall teys
performance. For example, analytical models can provide- va
able insight, but they are typically based on unrealistiguasp-
tions, such as giving all participants global system kndgte];
actual download traces may differ substantially from thedrtpre-
dictions ,]. Furthermore, most measurement studie® h
evaluated peers connected to pubdizents—BitTorrent download
sessionslﬁ 0]. They provide detailed data about ¥he o
all behavior of deployed BitTorrent systems, however, thteei-
ent limitations in collecting per-peer information in a fialiorrent
obstructs the understanding of individual peer decisiamig the
download. Legoutt al. [[L5] recently attempted to evaluate those
decisions, but only from the viewpoint of a single peer.

To overcome these limitations, we conduct extensive experi
ments on a private testbed and collect data from all peercama
trolled environment. In particular, we focus on the soedthok-
ing algorithmfor peer selection, which may be the driving factor
behind BitTorrent’s high performancﬂ [8]. This approadbwas us
to examine the behavior of individual peers under a micrps@nd
observe their decisions and interactions during the doahlo

Our main contribution is to demonstrate that the choking al-
gorithm facilitates the formation of clusters of similaaawidth
peers, ensures effective sharing incentives by rewardd¥egspvho
contribute data to the system, and maintains high uploéidation
for the majority of the download duration. These propertiase
been hinted at in previous work; this study constitutesrtfiest
experimental validation. We also show that, if the seed eon
provisioned, all peers tend to complete their download radahe
same time, independently of how much they upload. Clusters a
no longer formed, and, interestingly, high-capacity peessist the
seed in disseminating data to low-capacity ones, resduiliegery-
one maintaining high upload utilization. Finally, basedaum ob-
servations, we provide guidelines for seed provisioningdaytent
providers, and discuss a tracker protocol extension thditeades
an identified limitation of the protocol, namely the low uatbuti-
lization at the beginning of a torrent’s lifetime.

The rest of this paper is organized as follows. Secﬂion 2igesy
a description of the BitTorrent protocol and an explanatibithe
choking algorithm, as implemented in the official BitTorrehent.
Section|]3 describes our experimental methodology and tie ra
nale behind the experiments, while Sectﬂ)n 4 presents cuitse
Sectiorﬂs discusses seed provisioning quidelines and tpoped
tracker protocol extension. Lastly, Sectign 6 sets thidysin the
context of related work, and Sectiﬂn 7 concludes.

2. BACKGROUND

BitTorrent is a peer-to-peer content distribution protottaat
scales well with the number of participating peers. A BitEoit
system capitalizes on the upload capacity of each peer &r ¢od
increase global system capacity as the number of peersasese
A major factor behind BitTorrent’s success is a built-inéntives
mechanism, implemented by ithoking algorithm which is de-
signed to encourage peers to contribute data. The ressafdhtion
introduces the terminology used in the paper and descriliésrB
rent's operation in detail, with a particular focus on thekhg
algorithm.

2.1 Terminology

The terminology used in the BitTorrent community is not stan
dardized. For the sake of clarity, we define here the termd use
throughout this paper.

e Torrent. A torrentis the set of peers cooperating to down-
load the same content using the BitTorrent protocol.

e Tracker. Thetrackeris the only centralized component of
the system. Itis not involved in the actual distribution loé t
content, but it keeps track of all peers currently partitiga
in the download, and it collects statistics.

e Pieces and Blocks Content transferred using BitTorrent is
split into pieces with each piece being split into multiple
blocks Although blocks are the transmission unit, peers can
only share complete pieces with others.

o Metainfo file. The metainfo file also called a torrent file,

e Leecher and Seed A peer can be in one of two states: the
leecherstate, when it is still downloading pieces of the con-
tent, and theseedstate, when it has all the pieces and is shar-
ing them with others.

e Initial Seed. Theinitial seedis the first peer that offers the
content for download. There can be more than one initial
seeds. In this paper, however, we only consider the case of a
single initial seed.

e Rarest-First Algorithm . The rarest-first algorithmis the
piece selection strategy used by BitTorrent clients. li1$s a
known as thdocal rarest-first algorithm since it bases the
selection on the available information locally at each peer
Peers independently maintain a list of the pieces each wof the
remote peers has and buildarest-pieces seatontaining the
indices of the pieces with the least number of copies. This
set is updated every time a remote peer announces that it ac-
quired a new piece, and is used by the local peer to select the
next piece to download.

e Choking Algorithm . Thechoking algorithmalso known as
thetit-for-tat algorithm, is the peer selection strategy used by
BitTorrent clients. We provide a detailed description aéth
algorithm in Sectior} 2J3.

¢ Official BitTorrent Client . The official BitTorrenthientml],
also known as thenainline client, was the first BitTorrent
implementation and was initially developed by Bram Cohen,
BitTorrent’s creator.

2.2 BitTorrent Operation

Prior to distribution, the content is divided into multigdéeces,
and each piece into multiple blocks. The metainfo file is then
ated by the content provider. To join a torrent, a peeetrieves
the metainfo file out of band, usually from a well-known we®si
and contacts the tracker that responds with a peer set obmapd
selected peers, possibly including both seeds and leedRdhen
starts contacting peers in this set and requesting diff@ieces of
the content.

Most clients nowadays use the rarest-first algorithm foceige-
lection. In this manner, peer selects the next piece to dmaehl
from its rarest-pieces set. A local peer determines whiehgs its

contains all the information necessary to download the con- remote peers have based litfield messages exchanged upon es-
tent and includes the number of pieces, SHA-1 hashes for all tablishing new connections, which contain a list of a” tllm:ps a
the pieces that are used to verify received data, and the IP peer has. Peers also semavemessages to everyone in their peer

address and port number of the tracker.

e Interested and Choked We say that peeA is interested
in peerB whenB has pieces of the content thatdoes not
have. Conversely, peéris not interestedn peerB whenB
only has a subset of the pieces/f We also say that peer
A is chokedby peerB whenB decides not to send any data
to A. Conversely, peeA is unchokedby peerB whenB is
willing to send data té\. Note that this does not necessarily
mean that peeB is uploading data té, but rather thaB will
upload toAif Aissues a data request.

e Peer Set Each peer maintains a list of other peers to which
it has open TCP connections. We call this list peer set
and it is also known as the neighbor set.

e Local and Remote PeersWhen describing the choking al-
gorithm, we take the viewpoint of a single peer, which we
call thelocal peet We refer to the peers in the local peer’s
peer set agemote peers

set when they successfully receive and verify a new piece.

A peer uses the choking algorithm to decide which peers to ex-
change data with. The algorithm generally gives preference
those peers who upload data at high rates. Onceephoke period
typically set to ten seconds, a peer re-calculates the datving
rates from all peers in its peer set. It then selects thedhstees,

a fixed number of them, and uploads only to those for the durati
of the period. In BitTorrent parlance, a peer unchokes thteft
uploaders via aegular unchokeand chokes all the rest. In addi-
tion, it unchokes a randomly selected peer via a so-caltichistic
unchoke The logic behind this is explained in detail in Sectjor) 2.3.

Seeds, who do not need to download any pieces, follow a dif-
ferent unchoke strategy. Most implementations dictaté shads
unchoke those leechers thdgwnloaddata at the highest rates, in
order to better utilize seed capacity in disseminating thetent
as efficiently as possible. However, the official BitTorrelient
recently introduced a modified unchoke algorithm in seetksia
version 4.0.0. We perform the first detailed experimentalation
of this modified algorithm and show that it enables a moreaunif
utilization of the seed bandwidth across all leechers.

2.3 Choking Algorithm

We now describe the choking algorithm in detail as impleraent
in the official client, version 4.0.2. The algorithm was iility
introduced to foster a high level of data exchange recigioca
and is one of the main factors behind BitTorrent’s fairnessiet
peers that contribute data to others at high rates shoukivieec
high download throughput, arfdee-riders peers that do not up-
load, should be penalized by being unable to achieve higmédow
load rates. It is worth noting that, although the algorithas been
shown to perform well in a variety of scenarios, ithas r en
found that it does not completely eliminate free-ridi@,]

In particular, a peer may improve its download rates by doaah
ing from seeds, acquiring a large view of the peers in thetyior
benefiting from many optimistic unchokes. We discuss ttigés
further in Sectio 2.

As we noted earlier, the choking algorithm is different fee¢h-
ers and seeds. When in leecher state, a Peenchokes a fixed
number of remote peers. Unless specified explicitly by ther,us
this number of parallel uploads is determinedR¥y upload band-
width. For example, for an upload limit greater than or edqodl5
kB/s but less than 42 kB/s this number is set to 4. For getradi
the following we assume that the number of parallel uploadset
ton.

In leecher state, the choking algorithm is executed perailyi
at every rechoke period, i.e., every ten seconds, and irtiaaldi
whenever an unchoked and interested peer leaves the peer set
whenever an unchoked peer switches its interest state. &s ar
sult, the time interval between two executions of the athanican
sometime be shorter than a rechoke period. Every time thie-cho
ing algorithm is executed, we say that a newnd starts, and the
following steps are taken.

1. The local peer orders interested remote leechers aogordi
to the rates at which it received data from them, and ignores
leechers that have not sent any data in the last thirty second
These so-callednubbedpeers are excluded from consider-
ation in order to guarantee that only contributing peers are
unchoked.

. Then—1 leechers with the highest rates are unchoked via a
regular unchoke

. In addition, every three rounds, an interested candioiete
is chosenat randomto be unchoked via aoptimistic un-
choke If this peer is not unchoked via a regular unchoke,
it is unchoked via an optimistic unchoke and the round com-
pletes. If this peer is already unchoked via a regular unehok
a new candidate peer is chossrrandom

(a) If the candidate peer is interested in the local peer, it
is unchoked via an optimistic unchoke and the round
completes.

(b) Otherwise, the candidate peer is unchoked anyway,
step is repeated with a new randomly chosen can-
didate. The round completes when an interested peer
is found or when there are no more peers to choose,
whichever comes first.

Although more tham peers can be unchoked by the algorithm,

only n interested peers can be unchoked in the same round. Un-

choking non-interested peers improves the reaction timease
one of those peers becomes interested during the follongng r
choke period; data transfer can begin right away withoutingi
for the choking algorithm to be executed. Furthermore,mjstic
unchokes serve two major purposes. They function as a mEsour

discovery mechanism to continually evaluate the uploadivaith

of peers in the peer set in an effort to discover better pestrighey
also enable new peers that do not have any pieces yet to tagotst
into the torrent by giving them some initial pieces withceduiring
any reciprocation.

In the seed state, older versions of the official client, ab age
many current versions of other clients, perform the samgssas
in leecher state, with the only difference being that theedrd) in
step 1 is based on data transmission rates from the seeet, ttadim
to it. Consequently, peers with high download capacity averfed
independently of their contribution to the torrent, a fdwttcould
be exploited by free-ridersmw].

In version 4.0.0, the official client introduced a modifiecbkh
ing algorithm in seed state. According to this modified ailtpon,
a seed performs the same fixed numben pfrallel uploads as in
leecher state, but with different peer selection critefiaie algo-
rithm is executed periodically at every rechoke period, egery
ten seconds, and in addition, whenever an unchoked anestéeer
peer leaves the peer set, or whenever an unchoked peerasiitsh
interest state. Every time the choking algorithm is exetuenew
round starts, and the following steps are taken.

1. The local peer orders the interested amthokedremote
leechers according to the time it has sent them an unchoke
message, most recently unchoked peers first. This is the ini-
tial time the local peer had unchoked them:; if the local peer
keeps uploading to them for more than one rechoke periods,
it does not send them additional unchoke messages. This step
only considers leechers to which an unchoke message has
been sent recently (less than twenty seconds ago) or leech-
ers that have pending requests for blocks (to ensure that the
get the requested data as soon as possible). In case of a tie,
leechers are ordered according to their download rates from
the seed, fastest ones first, just like the old algorithm did.
Note that, as leechers do not upload anything to seeds, the
notion of snubbed peers does not exist in seed state.

. The number of optimistic unchokes to perfoaver the du-
ration of the next three rechoke perigd=., thirty seconds,
is determined using a heuristic. These optimistic unchokes
are uniformly spread over this duration, performimgop-
timistic unchokes per rechoke period. Due to rounding is-
sues,ny can be different for each of the three rechoke pe-
riods. For instance, when the number of parallel uploads is
4, the heuristic dictates that only two optimistic unchokes
performed in the entire thirty-second period. Thus, one op-
timistic unchoke is performed during each of the first two
periods and none during the last.

. At each rechoke period, the finst- ny leechers in the list
from step|[L are unchoked via regular unchokes.

and Step[ll includes the key feature of the modified algorithm edse

state. On the one hand, leechers are no longer unchoked based
on their observed download rates from the seed, but mairdgda

on the last time an unchoke message was sent to them. Thus, af-
ter a seed has been sending data to a leecher for six rechaédgpe
(when the number of parallel uploads is 4), it will stop dofegand
select another leecher to serve. In this manner, a seedralide
service to all leechers sooner or later, preventing anyleiegcher

from monopolizing it. On the other hand, according to thecfi
client’s version notes, this modified choking algorithméed state

also aims to reduce the amount of duplicate data a seed needs t
upload before it has pushed out a full copy of the content timéo
torrent. It strives to achieve that by keeping leechers aketi for

six rechoke periods, in order to prevent high leecher tuenérom
resulting in the transmission of the same pieces to diftdesmch-
ers. Interestingly, the most recent version of the officient has
reverted back to the original choking algorithm in seedest#l-
though the modified version of the algorithm we describee fieer
more robust to modified free-riding implementations, it htigpe
less efficient in torrents with compliant peers. Since thegany
behind the official client has been targeting legal contéstridu-
tion, where client alteration would arguably be harder, dynim
to optimize the implementation for this scenario.

Some other implementations have includesliper-seedingea-
ture with similar goals, in particular to assist a serviceviter with
limited upload capacity in seeding a large torrent. A seeti thiis
feature masquerades as a normal leecher with no data. As othe
peers connect to it, it will advertise a piece that it has nexe
loaded before or that is very rare. After uploading this piez a
given leecher, the seed will not advertise any new piecefdb t
leecher until it sees another peer’s 'have’ message for ideep
indicating that the leecher has indeed shared the pieceot¥itirs.
This algorithm has anecdotally resulted in much higher isgeef-
ficiencies by reducing the amount of duplicate pieces ugdds/
the seed, and limiting the amount of data sent to peers wh@tlo n
contribute [P]. A single seed running in this mode is rumaede
able to upload a full copy of the content after only uploadi®§%
of the content data volume. Since the official client has mlé-
mented this feature, our experiments do not measure itsteffe
the efficiency of the initial seed. We instead measure thebrunrof
duplicate pieces uploaded when employing the modified clwpki
algorithm in seed state.

3. METHODOLOGY
3.1 Experimental Setup

All our experiments were performed in private torrents oa th
PlanetLab experimental platforir [5]. PlanetLab’s coneentools
for collecting measurements from geographically dispecdients
greatly facilitated our work. For instance, in order to dgpand
launch BitTorrent clients on PlanetLab nodes, we utilizepghsh
tools |B]. PlanetLab nodes are typically not behind NATseaoh
peer in our experiments can be uniquely identified by its i esks.

We chose to experiment on private torrents, as opposed to sim
ulation, in order to examine both individual peer decisiand the
resulting impact on the torrent. Although simulation woblave
enabled us to run many more experiments, it would have been a
difficult task to accurately model the dynamics of a BitTotreys-
tem. Private torrents allow us to observe and record theviahaf
all peers in real scenarios. We can also vary experimentahpa
eters, such as peers’ upload rate limits, which helps usdissh
which factors are responsible for the observed behavior.

We performed experiments with the different torrent configu
tions described in Secti.Z. There are no agreed-upa@ngar
ters in the BitTorrent community, SO we set our experimenapea
eters empirically and based on current best practice. Dweach
experiment, leechers download a single file of 113 MB thasisia
of 453 pieces, 256 kB each.

All our experiments were performed with peers that do not
change their available upload bandwidth during the dowdlaa
disconnect before receiving a complete copy of the file. &liea
single initial seed, and in all experiments, all leecheis fhe tor-
rent at the same time, emulating a flash crowd scenario. Adtho
the behavior of the system might be different with other paer
rival patterns, we are interested in examining peer datisimder
circumstances of high load. The initial seed stays condect¢he

torrent for the duration of the experiment, while leechdszah-
nect immediately after completing their download.

We consider both a well-provisioned and an underprovigione
initial seed. Seed upload capacity has already been showa to
critical to the performance at the beginning of a torrent&time,
before the seed has uploaded a complete copy of the coﬂt@][?
However, the impact of an initial seed with limited capadaitysys-
tem properties is not clear. Nevertheless, appropriateigioming
of initial seeds is of critical importance to content praefisl. We at-
tempt to sketch recommendations on this issue in Sectippesdd
on our experimental results.

The available bandwidth of PlanetLab nodes is relativebhhi
for typical torrents. We define upload limits on the leechemd
seed to model realistic scenarios, ot not define any download
limits, nor do we attempt to match our upload limits to inherent
limitations of PlanetLab nodes. Thus, we might end up dedimin
high upload limit on a node that cannot possibly send dateaksg
due to network or other problems. Our results include thecgdfof
local network fluctuations, but we believe that the condnsiwe
draw are not predicated on such effects. Our experimenizail
PlanetLab nodes, of which 2 are located in Canada and thanest
spread across the continental United States. We conducinaliof
an experiment consecutively in time on the same set of mashin

We collect our measurements using a modified version of the
official BitTorrent implementation, instrumented to re¢anterest-
ing events and peer interactions. Our instrumented chelnich is
based on version 4.0.2 of the official client (released in I2a§5),
is publicly available for downloaoﬂ[3]. We collect a log ofaba
message sent or received along with the content of the mesaag
log of each state change, the rate estimates for remote pseds
by the choking algorithm, and other relevant informatiamtsas
the internal states of the choking algorithm. OtherwisecHiaal,
we run our experiments with the default client parameters.

3.2 Torrent Configurations

We experimented with several torrent configurations. The pa
rameters we changed from configuration to configuration lage t
upload rate limits for the seed and leechers and the upload-ba
width distribution of leechers. As mentioned before, leratown-
load bandwidth is never artificially limited, although lbcetwork
characteristics may impose an effective upload or downlioaitl

We ran experiments with the following configurations.

e Two-class Leechers are divided into two categories with dif-
ferent upload limits. This configuration enables us to oleser
system behavior in highly bipolar scenarios. Our experi-
ments involve similar numbers of slow peers, with 20 kB/s
upload limit, and fast peers, with 200 kB/s upload limit.

Three-class Leechers are divided into three categories with
different upload limits. This configuration helps us idénti
the qualitative behavioral differences of more distinessles

of peers. Our experiments involve similar numbers of slow
peers, with 20 kB/s upload limit; medium peers, with 50 kB/s
upload limit; and fast peers, with 200 kB/s upload limit.

Uniform-increase Upload limits are defined on leechers ac-
cording to a uniform distribution, with a small 5 kB/s step.
The slowest leecher has an upload limit of 20 kB/s, the sec-
ond slowest a limit of 25 kB/s, and so on. This configuration
provides insight into the behavior of torrents with more-uni
form distribution of peer bandwidth.

Our graphs in Sectioﬂ 4 correspond to experiments run wéh th
three-class configuration, but the conclusions we drawrdowell

with the results of other experiments. We stress distinstioshere
appropriate. We also ran preliminary experiments wherearthe
tial seed disconnects after uploading an entire copy of timéent,
but leechers remain connected after they complete theinibad,
serving as seeds for a short time. Peers in these experimaves
somewhat lower completion times thanks to the extra helmfro
leechers in content dissemination, but appear otherwisiesi

3.3 Experiment Rationale

The goal of our experiments is to understand the dynamidseof t
choking algorithm. To that end, we consider four metrics.

Clustering: The choking algorithm aims to encourage high peer
reciprocation by favoring peers who upload. Therefore, we
expect that peers will more frequently unchoke other peers
with similar upload capacities, since those are the ones tha
can reciprocate with high enough rates. The rules for peer se
lection by Qiuet al. [@] also support this hypothesis. Conse-
quently, it is expected that the choking algorithm converge
towards good clustering shortly after the beginning of the
download by grouping together peers with similar upload ca-
pacity. This behavior, however, is not guaranteed and has
never been previously verified experimentally. Indeeds let
consider a simple example. Pe®will unchoke peem if
B has been uploading data at a high ratétoln order for
B to continue uploading t@, A should also start sending
data toB at a high enough rate. The only way to initiate
such a reciprocal relationship is via an optimistic unchoke
Yet, since optimistic unchokes are performed at random, it
is not clear whether and wheh and B will get a chance
to interact. Therefore, in order to preserve clusteringdi-op
mistic unchokes should successfully initiate interactibe-
tween peers with similar upload capacities. In additioghsu
interactions should persist despite potential disrugtisach
as optimistic unchokes by others or network bandwidth fluc-
tuations.

Sharing incentives: A major goal of the choking algorithm is to
give peers an incentive to share data. The algorithm strives
to encourage peers to contribute, since doing so will imgrov
their own download rates. We evaluate the effectiveness of
these sharing incentives by measuring how peers’ upload
contributions affect their download completion time. We ex
pect that the more a peer contributes, the sooner it will com-
plete its download. However, we do not expect to observe
strict data volume fairnesswhere all peers contribute the

same amount of data; peers who upload at high rates may

end up contributing more data than others. They should be
rewarded though, by completing their download sooner.

Upload utilization: Upload utilization constitutes a reliable met-
ric of efficiency in peer-to-peer content distribution gyss,
since the total upload capacity of all peers represents the

Regular Unchoke Duration (All Runs)

a0l 1200
35 o e e e e AR1000
9 30,
o = 800
8 o5t
g’ Tl
5 20f o 600
3 =Saas
s 15 i 400
[e]
D 10,
200
5,
0 : ‘ : 0
0 10 30 40

20
Uploading peer ID

Figure 1: Time duration that peers unchoked each other via a reg-
ular unchoke, averaged over all runs. Darker squares mmres
longer unchoke times (the unit of the color bar on the righhis
seconds). Peers 1 to 13 have a 20 kB/s upload limit, peers 24 to
have a 50 kB/s upload limit, and peers 28 to 40 have a 200 kB/s up
load limit. The seed (peer 41) is limited to 200 kBI$e creation

of clusters is clearly visible.

4. EXPERIMENTAL RESULTS

We now report the results of representative experiments tha
demonstrate our main observations. For conciseness, \gergre
only results drawn from the three-class torrent configaratbut
our conclusions are consistent with our observations frohero
configurations as well.

4.1 Well-Provisioned Initial Seed

We first examine a scenario with a well-provisioned initie¢d,
i.e., a seed that can sustain high upload rates. We expsactothi
be common for commercial torrents, whose service provitigrs
ically make sure there is adequate bandwidth to initiallgdsthe
torrent. An example might be Red Hat distributing its latastx
distribution. Sectior@.Z shows that peer behavior in tles@nce
of an underprovisioned initial seed can differ substalytial

We consider an experiment with a single seed and 40 leechers:
13 slow peers (20 kB/s upload limit), 14 medium peers (50 kB/s
upload limit), and 13 fast peers (200 kB/s upload limit). Heed,
which is represented as peer 41 in the following figuresnistéid
to upload 200 kB/s, as fast as a fast peer. Different peeradplo
limits are defined in order to model different levels of cdmition.
The results we report are based on thirteen experiment ARs.
though the official BitTorrent implementation would set tihem-
ber of parallel uploads based on the defined upload limit (4tfe
slow, 5 for the medium, and 10 for the fast peers and the seed),

maximum throughput the system can achieve as a whole. As we set this number to 4 for all peers, which in fact is what most

a result, a peer-to-peer content distribution protocoluho
aim at maximizing peers’ upload utilization. We are inter-
ested in measuring this utilization in BitTorrent systeanrsd
identifying the factors that can adversely affect it.

Seed service: The modified choking algorithm in seed state bases
its decisions on the time peers have been waiting for seed
service, in addition to their download rates from the seed.
Thus, we expect to see uniform sharing of the seed upload
bandwidth among all peers. It should also be impossible for
fast leechers to monopolize the seed.

other clients would do. This ensures homogeneous condifion
the torrent and makes it easier to interpret the results.

4.1.1 Clustering

As explained in Sectio@.fﬂ, we expect to observe clustering
based on peers’ upload capacities. Fid]Jre 1 demonstratesaars
indeed form clusters. The figure plots the total time peechaked
each other via a regular unchoke, averaged over all runeahth
periment. It is clear that peers in the same class clustethieg
in the sense that they prefer to upload to each other. Thiaviah
becomes more apparent when considering a metric such dsithe

Regular Unchoke Duration Clustering Index (All Runs)

Peer Download Speed (All Runs)

E’O.GﬁﬁWWH ‘#HW HM‘ HH JF H é“rO* 100
°2iiMf%“W%% il ; . T

peer ID

Downloading peer ID

Figure 2: Clustering index for all peers, averaged over all runs, Figure 4. Peer download speeds for all 60-second time intervals
in the presence of a well-provisioned seed. Errorbars septehe during the download, averaged over all runs. Darker red¢sng
10th and 90th percentiles. Peers 1 to 13 have a 20 kB/s uploadrepresent higher speeds (the unit of the color bar on the isgh
limit, peers 14 to 27 have a 50 kB/s upload limit, and peerso28t kB/s). Peers 1 to 13 have a 20 kB/s upload limit, peers 14 to 27
40 have a 200 kB/s upload limit. The seed (peer 41) is limited t have a 50 kB/s upload limit, while peers 28 to 40 have a 200 kB/s
200 kB/s.Peers show a strong preference to unchoke others in the upload limit. The seed (peer 41) is limited to 200 kBPeer 27
same class. achieves lower download rates than other peers in its claste
peer 8 is the last one to finish.

Download Completion Time (All Runs)

0.6 |

! - - -fast
medium

—slow

0.4

0.2¢

Cumulative Fraction of Peers

2000 3000

Completion Time (s)

Figure 3: Cumulative distribution of the download completion
time for the three different classes of leechers, in thegores of
a well-provisioned seed (limited to 200 kB/s), for all run$he
vertical line represents the earliest possible time thatitwnload
could completeFast peers finish much earlier than slow ones.

tering index We define this for a given peer in a given class (fast,
medium, or slow) as the ratio of the duration of regular utkeiso
to the peers of its class over the duration of regular unchake
all peers. A high clustering index indicates a strong peefee to
upload to peers in the same class. Figﬂjre 2 plots this indealifo
peers and demonstrates that peers prefer to unchoke otrsripe
their own class, thereby forming clusters. Further expenitawith
upload limits following a uniform distribution also showettpeers
have a clear preference for peers with similar upload cépaci
Although from Figurg]l it might seem that slow peers show a
proportionally stronger preference for their own clask ithan ar-
tifact of the experiment. Slow peers take longer to comptiesér

download (as shown in Figu@ 3), and so they perform a higher
number of regular unchokes on average than fast peers. Also n
tice that medium peer 27 interacts frequently with slow peEhis
peer’s download capacity is inherently limiteatguably due to ma-
chine or local network limitations, as seen in Figlfe 4 thatgp
observed peer download speeds over time. As a result, & stay
nected to the torrent even after all other peers of its clags bom-
pleted their download. During that last period it has toriate with
slow leechers, since those are the only ones left.

FigureD. also shows that reciprocation is not necessarityatu
Slow peers frequently unchoke medium peers, but the favootis
returned. Indeed, the slow peers unchoked medium peerddtala
of 501,844 seconds, as shown by the relatively dark ceafepdr-
tition. However, the medium peers unchoked slow peers fbr on
273,985 seconds, as shown by the lighter bottom-centes [&bk
of reciprocation is due to the fact that slow peers are délitse to
medium ones, since they cannot offer high enough upload.rate

In summary, the choking algorithm facilitates clusteringpere
peers mostly interact with others in the same class, witlotioa-
sional exception of random optimistic unchokes.

4.1.2 Sharing Incentives

We now examine whether BitTorrent’s choking algorithm pro-
vides effective sharing incentives, in the sense that awhercon-
tributes more to the torrent is rewarded by completing itsrdoad
sooner than the rest. Figupe 3 indeed demonstrates this tfeebe
case. We plot the cumulative distribution of completiondifor
the three classes of leechers in the previous experimerg.véh
tical line in the figure represents tloptimal completion timethe
earliest possible time that any peer could complete its ttoaeh
This is the time the seed finished uploading a complete copy of
the content. On average, this time is around 650 second$ior t
experiment.

Fast leechers complete their download soon after the optima
completion time. Medium and, especially, slow leecherg tsif-

Aggregate Amount of Uploaded Data (All Runs) %10 Global Upload Utilization (All Runs)
a0k 11T i - 6 T T T T T
H TR I T T NI 1
a) H . '
— 30r H = 0.8F .
o F | S
Q 25¢ §
g ; S o6l |
T 20 =]
&
£ E
s 15 2 2 0.4f]
o =) .
O 101 :
5l 1 0.l |
o0 10 20 30 40 0 0 ! ! ! ! S HEOT
Uploading peer ID 0 10 20 30 40 50 60

Time slot (60s)

Figure 5: Total number of bytes uploaded by peers to each other,

averaged over all runs. Darker squares represent morethiatar(t Figure 6: Scatterplot of peers’ upload utilization for all 60-second
of the color bar on the right is in bytes). Peers 1 to 13 have a 20 time intervals during the download, in the presence of a-well
kB/s upload limit, peers 14 to 27 have a 50 kB/s upload limitja Provisioned seed (limited to 200 kB/s). Each point represére
peers 28 to 40 have a 200 kB/s upload limit. The seed (peer 41) average upload utilization over all peers for a given expenit run.

is limited to 200 kB/s.Fast peers upload much more data than the Utilization is kept high during most of the download session

rest.

vantage of the available upload capacity. Average utitbrafor

nificantly longer to finish. Contributing to the torrent etetba each of the thirteen runs is plotted once per minute. Theicnistr
leecher to enter the fast cluster and receive data at higtes.rThis torrent-wide: for each minute, we sum the upload bandwid#xdu
in turn ensures a short download completion time. The clypéln by the peers during that minute, and divide by the upload @apa
gorithm does indeed foster reciprocation by rewardingrdouting ity available over that minute for all peers still connectedthe
peers. In experiments with upload limits following a unifodistri- minute’s end. The total capacity decreases over time as peet-
bution, the peer completion time is also uniform: completione plete their downloads and disconnect. Utilization is lovite be-
decreases when a peer’s upload contribution increases fiihi ginning and the end of the session, but close to optimal fer th
ther indicates the algorithm’s consistent properties wétpect to majority of the download. It rises slightly after approxitely 15
effective sharing incentives. minutes, which corresponds to when fast peers leave thentorr
Note, however, that this does not imply any notion of data vol Perhaps the four-peer limit on parallel uploads restriats peers’
ume fairness. Fast peers end up uploading significantly whata utilization. In any case, utilization is good overall.
than the rest. Figurg 5, which plots the actual volume of abéal In summary, the choking algorithm, in cooperation with othe
data averaged over all runs, demonstrates that fast pesttseama- BitTorrent mechanisms such as rarest-first piece selectiors
jor contributors to the torrent. Most of their bandwidth ipended a good job of ensuring high utilization of the upload capacit
on other fast peers, per the clustering principle. Intarght the leechers during most of the download. Low utilization dgrthe

slow leechers end up downloading more data from the seed. Thestartup period may pose a problem for small contents, fockwhi
seed provides equal service to peers of any class, as we show i it could dominate the total download time. We discuss a pikn
Section4, but slow peers have more opportunities thizer® solution to this in Sectio@.z.

to download from the seed, since they take longer to complete

In summary, BitTorrent provides effective incentives faeps 4.1.4 Seed Service
to contribute, as doing so will reward a leecher with sigaifitty The official client introduced a modified choking algorithm i
higher download rates. Recent studieg [16,[17, 23] have stioat seed state, as described in Secfioh 2.3, although it revbatek to
limited free-riding is possible in BitTorrent under speciircum- the original in the most recent version. The client's vensiotes
stances, although such free-riders do not appear to sgvenehct claim that the modified algorithm aims to reduce the amount of
the quality of service for compliant peers. However, thasdiss duplicate data a seed needs to upload before it has pushex out
do not significantly challenge the effectiveness of shamugn- full copy of the content into the torrent. We study this mastifi
tives enforced by the choking algorithm. Although freemniglis algorithm for the first time and examine this claim.
possible, such peers typically achieve lower downloadsritan Figureﬁ shows the duration of unchokes, both regular anie opt
they could if they followed the protocol. As a result, if pgavish mistic, performed by the seed in a representative run of the-a
to obtain the highest possible rates, it is in their bestrasteto mentioned setup. Leechers are unchoked in a uniform mareer,
conform to the protocol. gardless of upload speed. Fast peers, those with highellPsger

. . complete their download sooner, after which time the seeides

4.1.3 Upload Utilization its upload bandwidth among the remaining leechers. Leegler

We now turn our attention to performance by examining whethe the last to complete (as shown in Figtﬂe 4), and receivesigivel
the choking algorithm can maintain high utilization of pgarp- service from the seed during the end of its download. We there
load bandwidth. FigurE 6 is a scatterplot of such utilizafio the see that the modified choking algorithm in seed state prewité

aforementioned setup. A utilization of 1 represents takiligad- form service; this is because it bases its unchoking dewsio the

Seed Unchoke Events

N w w B
[¢)] o [o
T T T T

I | T
]
I
! '
|
|
i i i i

Downloading peer ID
N
Q
]

15(= _ _ oo]
10-"_ -~ - - mmsxe
5: - . - - - - - - __‘.__‘.__‘_:‘_:'_:'_;]
0 SRl ER S sl
0 1000 2000 3000
Time (s)

Figure 7: Duration of all unchokes (regular and optimistic) per-
formed by a well-provisioned seed to each peer. ResultsSde
representative run. Peers 1 to 13 have a 20 kB/s upload pigsgt,;s

14 to 27 have a 50 kB/s upload limit, and peers 28 to 40 have a 200

kB/s upload limit. The seed (peer 41) provides uniform service to
all leechers.

Pieces Uploaded by the Seed

2500
(%) //
§ 2000 i]
o e
© //
@ 1500f e 1
Qo s
€ e
5 p
o s
2 10007 1
g
=} 7
§ so0f .]
o pa —Unique
---Total
0O 1000 2000 3000 4000
Time (s)

Figure 8: Number of pieces uploaded by the seed (limited to 200
kB/s), for a single representative run. The Unique line espnts
the pieces that had not been previously uploaded, while ot T
line represents the total number of pieces uploaded sd\farob-
serve a 14% duplicate piece overhead.

time peers have been waiting for seed service. As a resaltjgk
of fast leechers downloading the entire content and quididgon-
necting from the torrent is significantly reduced. Furthere) this
behavior would mitigate the effectiveness of exploits ta¢mpt
to monopolize seeds [[16].

According to anecdotal evidencE [2], initial seeds usirgdtd
algorithm might have to upload 150% to 200% of the total conte
size before other peers become seeds. Our experiments lshbw t
the modified algorithm avoids this problem. Figﬂre 8 plotsiiom-
ber of pieces uploaded by the seed during the download sefssio
a representative run. 527 pieces are sent out before ae eopy
of the content (453 pieces) has been uploaded. Thus, thialgpl
piece overhead is around 14%, indicating that the modifiedk-ch

Regular Unchoke Duration (All Runs)

40f

35, 300
9 30t 250
2
8 o5t 200
2
£ 20
B 150
€15
S el
Z 100
0O 10r

50
|
0 20 °

0 10

20 30
Uploading peer ID

Figure 9: Time duration that peers unchoked each other via a reg-
ular unchoke, averaged over all runs. Darker squares i&mres
longer unchoke times (the unit of the color bar on the righihis
seconds). Peers 1 to 12 have a 20 kB/s upload limit, peers 13 to
26 have a 50 kB/s upload limit, and peers 28 to 40 have a 200 kB/s
upload limit. The seed (peer 27) is limited to 100 kB¥kere is no
discernible clustering.

ing algorithm in seed state avoids unnecessarily uploadini-
cate pieces to a certain extent. This number was consistergs
all our experiments, ranging from 11 to 15%. However, to testb
of our knowledge, there has been no experimental evaluafitire
corresponding overhead in the old algorithm, so it is noarchew
much of an improvement this is.

In any case, 14% duplication represents an opportunitynfer i
provement. The official client always issues requests fecgs in
the rarest-pieces set in the same order. As a result, leentight
end up requesting the same piece from the seed at approkimate
the same time. It would be preferable for leechers to reqaesst
pieces in random order instead.

4.2 Underprovisioned Initial Seed

We now turn our attention to a scenario with an underproxisib
initial seed and demonstrate that the seed upload capadititical
to performance during the beginning of a torrent’s lifetimEhe
experiment we present here involves a single seed and 38dexc
12 slow, 14 medium, and 13 fast. These nodes are different tha
the nodes used in the previous experiment. The initial sexd,
resented as peer 27 in the following figures, is in this casédd
to 100 kB/s, instead of 200 kB/s. We set the number of parallel
uploads again to four for the seed and all the leechers. Thitse
we present are based on eight experiment runs and are emsist
with our observations from experiments with other torremtfigu-
rations. Peer behavior in the presence of an underproediuritial
seed is substantially different than with a well-provigdrone.

4.2.1 Clustering

Figureﬂ) shows the total time peers unchoked each other via a
regular unchoke, averaged over all runs of the experimentoh-
trast to Figureﬂl, there is no discernible clustering amaggypin
the same class. The lack of clustering in the presence of an un
derprovisioned initial seed becomes more apparent whesidgm
ing the clustering index metric defined in Sec.l.l.u ;

Regular Unchoke Duration Clustering Index (All Runs)

1
* fast
0.8 + medium §
o slow
0.6 1

0.4

Clustering index

0.2r + 3
O L L L
0 10 20 30 40
peer ID

Figure 10: Clustering index for all peers in the presence of an
underprovisioned seed, averaged over all runs. Errorbaresent

the 10th and 90th percentiles. Peers 1 to 12 have a 20 kB/adiplo
limit, peers 13 to 26 have a 50 kB/s upload limit, and peer28t
have a 200 kB/s upload limit. The seed (peer 27) is limiteddd 1
kB/s. Peers do not show a clear preference to unchoke other peer
in any particular class.

Peer Availability (All Runs)

40F 1
35+
0.8
Q 30t
o
8 25t B 0.6
= I
5 20f !
S | 0.4
P L [N
g 15
[e]
0 10t
0.2
5,
0 ‘ : : 0
0 10 30 40

20
Uploading peer ID

Figure 11: Normalized interested time duration for each peer pair,
averaged over all runs. Darker squares represent higheapaié
ability. Peers 1 to 12 have a 20 kB/s upload limit, peers 136to 2

have a 50 kB/s upload limit, and peers 28 to 40 have a 200 kB/s

upload limit. The seed (peer 27) is limited to 100 kBFast peers
have poor peer availability to all other peers.

shows this metric for all peers. They are all similar, intiitg a
lack of preference to unchoke peers in any particular class.

Figure attempts to explain this behavior by plotting teemp
availability of each peer to every other peer, averaged aleuns
of the experiment. We define tlpeer availabilityof a download-
ing peerY to an uploading peeX as the ratio of the tim& was
interested irY to the time thal spent in the peer set of. A peer
availability of 1 means that the uploading peer was alwayerin
ested in the downloading peer, while a peer availability oféans
that the uploading peer was never interested in the dowirnigad
peer.

Download Completion Time (All Runs)

1 - ‘
o :
8 0.8F
o
©
S 0.6
3]
o
-
_g 0.41
8
g - - -fast
8 0.2r medium

—slow
0 L i L L L L L
0 1000 2000 3000 4000 5000 6000

Completion Time (s)

Figure 12: Cumulative distribution of the download completion
time for the three different classes of leechers, in thegmes of

an underprovisioned seed (limited to 100 kB/s), for all rumge
vertical line represents the earliest possible time thatitwnload
could complete.Most peers complete at approximately the same

Sime, regardless of their contribution, soon after the dagdhes

uploading a complete copy of the content.

We can see that the fast peers have poor peer availability to a
other peers. This is because the seed is uploading new péces
a low rate, so even if it uploaded only to fast peers, thoseldvou
quickly replicate every piece as it was completed, remagimion-
interested for the rest of the time. The same is not true fow sl
peers, however, since they upload even more slowly thanet. s
In addition, when a fast leecher is unchoked by a slow leeéher
will always reciprocate with high rates, and thereby be ¢red
by the slow leecher. As a result, fast peers will get new @iece
even from medium and slow peers. In this manner, fast peers pr
vent clustering by taking up slower peers’ unchoke slotstand
breaking any clusters that might be starting to form. Thevpnts
medium and slow peers from clustering together, even tholigh
seed is fast enough with respect to them. Further experiveitt
other torrent configurations, including one with the idiseed fur-
ther limited to 20 kB/s, confirm this conclusion.

In summary, when the initial seed is underprovisioned, trake
ing algorithm does not enable peer clustering. We studyam#xt
section how this lack of clustering affects the effectiv@nef shar-
ing incentives.

4.2.2 Sharing Incentives

We now examine how the lack of clustering affects the effeeti
ness of sharing incentives. In particular, we investigdtetiver fast
peers still complete their download sooner than the regUrE
shows that this is no longer the case. Most peers complete the
download at approximately the same time. The points in tihefta
the figure are due to a single slow peer, peer 8, which contplete
its download last in every run. This PlanetLab node has a poor
effective download speed independently of the chokingrétyn,
likely due to machine or local network limitations. All othgeers,
for all runs, complete their download less than 2,000 ses@ifir
the beginning of a run. Clearly, seed upload capacity is #re p
formance bottleneck. Once the seed finishes uploading aletenp
copy of the content, all peers complete soon thereafteiceSip-
loading data to others does not shorten a peer’'s compléatiza t

Aggregate Amount of Uploaded Data (All Runs) 7

x 10
40f ==
6
35¢
Q 30t 5
@
8 25) 4
g
— 2 L
520 3
€ 15
= 15l
3 2
[a) 10}
5l 1
00 10 30 40 0

20
Uploading peer ID

Figure 13: Total number of bytes peers uploaded to each other,
averaged over all runs. Darker squares represent more titata
unit of the color bar on the right is in bytes). Peers 1 to 12hav
20 kB/s upload limit, peers 13 to 26 have a 50 kB/s upload Jimit
and peers 28 to 40 have a 200 kB/s upload limit. The seed (ffger 2
is limited to 100 kB/s.Fast peers upload the most data, spreading
their bandwidth evenly.

Global Upload Utilization (All Runs)
1 — ‘

0.4r

Upload utilization

0.2}

] F

25 30

0 10

15 20 35
Time slot (60s)

Figure 14: Scatterplot of peers’ upload utilization for all 60-second

time intervals during the download, in the presence of aretprd-

visioned seed (limited to 100 kB/s). Each point represdrmsat/-

erage upload utilization over all peers for a given expeniman.

Utilization is kept at acceptable levels despite the seaidtion.

BitTorrent’s sharing incentives do not seem to be effedtivthis
situation.

Fast peers are again the major contributors in the torremtinb
this case their upload bandwidth is expended equally acthes
fast and slower peers alike. FigLE 13, which plots the amofin
uploaded data between each peer pair, shows that fast pades m
the most contributions, distributing their bandwidth dyeto all
other peers.

In summary, when the initial seed is underprovisioned, ttake
ing algorithm does not provide effective incentives to citnte.
Nevertheless, the available upload capacity of fast peeedféc-
tively utilized to replicate the pieces being uploaded g/ gbed.

Global Upload Utilization (All Runs)
1 ‘ : ‘

0.8r 1

0.61 1

Upload utilization

80

OO 20

40 60 100
Time slot (60s)

Figure 15: Scatterplot of peers’ upload utilization for all 60-second
time intervals during the download, in the presence of arséye
underprovisioned seed (limited to 20 kB/s). Each pointespnts
the average upload utilization over all peers for a givereeixpent
run. Utilization is poor when the seed is very slow.

4.2.3 Upload Utilization

Interestingly, even with a slow seed, upload utilizatiomaéns
relatively high, as shown in Figuie [14. Leechers manage {0 ex
change data productively among themselves once new pieees a
downloaded from the seed, so that the lack of clustering does
degrade overall performance significantly. The BitTorréesign
seems to lead the system to do the right thing: fast peersilootet
their bandwidth to reduce the burden on the initial seedpihgl
disseminate the available pieces to slower peers. Alththiglde-
stroys clustering, it improves overall efficiency, whichaiseason-
able trade-off given the situation.

We also experimented with a seed limited to an upload capacit
of 20 kB/s. FigureﬂS shows that, with this extremely low sead
pacity, there are few new pieces available to exchange gpainy
in time, and each new piece gets disseminated rapidly aftere-
trieved from the seed. The overall upload utilization is riow.
Slow peers exhibit slightly higher utilization than the tresince
they do not need many available pieces to use up their alailab
upload capacity.

In summary, even in situations where the initial seed is tprde
visioned, the global upload utilization can be high. Howewair
experiments only involve compliant clients, who do not tnatapt
their upload contributions according to a utility functiohthe ob-
served download speed. On the other hand, in an environnigmt w
free-riders and an underprovisioned seed, one might eadeater
upload utilization due to the lack of altruistic peer cottions.

5. DISCUSSION

We now discuss two limitations of the choking algorithm tivat
identified through our experiments: the initial seed uploapac-
ity is fundamental to the proper operation of the incentivexh-
anism, and peers take some time to reach full upload uiibzatt
the beginning of the download session.

5.1 Seed Provisioning

When the initial seed is underprovisioned, the choking rétigm
does not lead to the clustering of similar-bandwidth pedtsen

without clustering, however, we observed high upload zation.
Interestingly, in the presence of a slow initial seed, thetqwol
mechanisms lead the fast leechers to contribute to the dagrdf
all other peers, fast or slow, thereby improving perfornganc
However, whenever feasible, one should engineer adequiate i
tial seed capacity in order to allow fast leechers to achoptenal
performance. Our results show that the lack of clusteringuos
when fast peers cannot maintain their interest in othepists. In
order to avoid this situation, the initial seed shoatdeast be able
to upload data at a speed that matches that of the fastess pethre
torrent This suggestion is of course a rule-of-thumb guideling, an
assumes that the service provider knows a priori the maxirnneim
load capacity of the peers that may join the torrent in therutin
practice, reasonable bounds could be derived from measmtem
or from an analysis of deployed network technologies. Faurtk-
search is needed to evaluate the exact impact of initial capac-
ity. We are currently developing an analytical model thatmapts
to express the effect of this parameter on peer performance.

5.2 Tracker Protocol Extension

When a new leecher first joins the torrent, it connects to doan
subset of already-connected peers that are returned byaitiet.
However, in order to reach its optimal bandwidth utilizatiahis

6. RELATED WORK

There has been a fair amount of work on the performance and
behavior of BitTorrent systems. Bram Cohen, the protoaiés
ator, has described BitTorrent’s main mechanisms and design
rationale [B]. There have been several measurement stextes-
ining real BitTorrent traffic. 1zakt al. [[L4] measure several peer
characteristics derived from the tracker log for the Redtiatix
9 1SO image, including the number of active peers, the propor
tion of seeds and leechers, and the geographical spreacrs. pe
They observe that while there is a correlation between apéoeal
download rates, indicating that the choking algorithm igkirgy,
the majority of content is contributed by only a few leechansl
the seeds. Pouwelst al. [E] study the content availability, in-
tegrity, and download performance for torrents on an oragifar
tracker website. They observe that the centralized traobempo-
nent could potentially be a bottleneck. Andraeteal. [E] study
BitTorrent sharing communities. They find that sharingeran-
forcement and the use of RSS feeds to advertise hew contgnt ma
improve peer contributions, yet torrents with a large numie
seeds present ample opportunity for free-riding. FurtloeenGuo
et al. [[L1] demonstrate that the peer arrival and departure rate is
exponential, and that performance fluctuates widely in ktoal
rents. Inter-torrent collaboration is proposed as an ratiére to

new leecher needs to exchange data with those peers thaahave providing extra incentives for leechers to stay connecfeat the

similar upload capacity to itself. If there are few such gdarthe
torrent, it may take some time to discover them, since thistba
be done via random optimistic unchokes that occur only oxegye
30 seconds.

Consequently, it might be preferable to utilize the tracker
matching similar-bandwidth leechers. In this manner, tination
of the discovery period could decrease and the upload atiitiz
would be high even at the beginning of a peer’s download. Ewe n
leecher couldeport its available upload capacity to the tracker
when joining the torrent This parameter can be configured in the
client software, or may possibly be the actual maximum wuplase
measured during previous downloads. The tracker would teen
ply with a random subset of peers as usual, along with théoragp
capacities. The new leecher could optionally perform ojstiim
unchokes first to peers with similar upload capacity, in darefo
discover the best partners sooner.

Using this new tracker protocol extension, if the peer setaios
only a few leechers with similar upload capacity, they wiiabver

each other quickly. Leechers should employ some means of de-pjece selection strategy. Fan al. [

tecting and punishing others who lie about their availalgmad
capacity. For instance, if a leecher does not respond to &n op
mistic unchoke with an upload rate close to the one it annedinc
the tracker, that leecher will not be unchoked again for spersd
of time. In this manner, the possibility of a remote leechéiating
a new interaction is left open, yet the benefit from freemidbe-
havior is limited since free-riders will eventually end up&ed by
most peers. Since the tracker still returns a random subpetos,
independently of the advertised upload capacity, there issk of
creation of disconnected clusters. In a collaborativerenvnent,
however, the tracker might even want to return peers bas#tein
capacity, as previously proposeﬂ! [7], in order to speed uptet
creation even more. Of course, although the proposed traske
tension is promising, further investigation is required/¢oify that
it will work as expected.

completion of their download. A more recent study by Legett
al. [[LH] presents the results of extensive experiments on ogal t
rents. They show that the rarest-first and choking algostipiay

a critical role in BitTorrent’s performance, and claim tlhé re-
placement with a volume-based tit-for-tat algorithm, asposed
by other researcherEll:%], is not appropriate. Howevey, doenot
identify the reasons behind the properties of the chokiggréghm
and fail to examine its dynamics due to the single-peer vigatp

Several analytical studies have formulated models for
BitTorrent-like protocols. Qiuet al. [ﬂ] provide a solution
to a fluid model of BitTorrent, where they study the chokingaal
rithm and its effect on performance. They observe that dptim
unchoking may provide a way for peers to free-ride on theesgst
Their model assumes peer selection based on global knoglefdg
all peers in the torrent, as well as uniform distribution &qes.
Massoulieet al. [E] introduce a probabilistic model of BitTorrent-
like systems and argue that overall system performance nlates
depend critically on either altruistic peer behavior orrifuest-first
characterize the complete
design space of BitTorrent-like protocols by providing adb
that captures the fundamental trade-off between perfocmand
fairness. Whereas all these models provide valuable ingigh
the behavior of BitTorrent systems, unrealistic assunmgtilimit
their applicability in real scenarioﬂ 20].

Other researchers have relied on simulations to under&#and
Torrent’s properties. Felbet al. [E] conducted an initial investi-
gation of the impact of different peer arrival rates, pegracities,
and peer and piece selection strategies. Bharaam)le[ﬂ] utilize a
discrete event simulator to evaluate the impact of BitTarsecore
mechanisms and observe that the rate-based tit-for-taegiris in-
effective in preventing unfairness in peer contributiolbey also
find that the rarest-first algorithm outperforms alterrefiece se-
lection strategies. However, they do not evaluate a pedagr
than 15 peers, whereas the official implementation has aildefa
value of 80. This may affect the results since the accuradhef
piece selection strategy is affected by the peer set sizethétu
more, Tianet al. [@] study peer performance towards the end of
the download and propose a new peer selection strategy which

ables more clients to complete their download after the depa
of all the seeds.

Researchers have also looked into the feasibility of sdbiéttav-
ior, when peers attempt to circumvent BitTorrent mechasism
gain unfair benefit. Shneidmaet al. [@] were the first to demon-
strate that BitTorrent exploits are feasible. They brieigctibe an
attack to the tracker and an exploit involving leechersdyatout
the pieces they have. Jwet al. [E] argue that the choking al-
gorithm is not sufficient to prevent free-riding and propaseew
algorithm to enforce fairness in peers’ data exchangesgKaset
al. [E] design and implement three exploits that allow a peev wh
does not contribute to maintain high download rates undecifip

circumstances. Even though such selfish peers can obtai@ mor

bandwidth, there is no considerable degradation of theadi -
tem’s quality of service. Lochest al. [E] extend the work in |[16]
and demonstrate that limited free-riding is feasible evethé ab-
sence of seeds. They also describe selfish behavior in B&for
sharing communities. In addition, Sirivianes al. [@] evaluate
an exploit based on maintaining a larger-than-normal viéthe
torrent. Piateket al. [E] observe that high-capacity peers typi-
cally provide low-capacity ones with an unfair share of ttaad
They design a choking algorithm optimization that realtesahe
superfluous upload bandwidth to others in order to maximess p
download rates.

Our work differs from all previous studies in its approacid an
results. We perform the first extensive experimental stddgin
Torrent in a controlled environment, by monitoring all peer the
torrent and examining peer behavior in a variety of scesa@ur
results validate protocol properties that have not beewiqusly
demonstrated experimentally, and identify new propentésted
to the impact of the initial seed on clustering and sharirgeim
tives.

7. CONCLUSION

In this paper we presented the first experimental investigat
of BitTorrent systems that links per-peer decisions andailtor-
rent behavior. Our results validate three BitTorrent prtgs that,
though believed to hold, have not been previously demaiestex-
perimentally. We show that the choking algorithm enablestelr-
ing of similar-bandwidth peers, fosters effective shaiimgentives
by rewarding peers who contribute, and achieves high pdeadp
utilization for the majority of the download duration. Wesalex-
amined the properties of the modified choking algorithm iadse
state and the impact of initial seed capacity on the oveyaliesn
performance. In particular, we showed that an underpravési
initial seed does not facilitate the clustering of peers d@oels not
provide effective sharing incentives. However, even irhsaicase,
the choking algorithm facilitates efficient utilization tdfe avail-
able resources by having fast peers help others with theindo
load. Based on our observations, we offered guidelinesdotent
providers regarding seed provisioning, and discussed popeal
tracker protocol extension that addresses an identifieithliion of
the protocol.

This work opens up many avenues for future research. We are

currently developing an analytical model to express theaichjof
seed capacity on peer performance. It would also be integett
run experiments with the old choking algorithm in seed staite
compare its properties to the modified algorithm, espsciaith
respect to the upload of duplicate pieces. In addition, walgvo
like to investigate the impact of different numbers of reguand
optimistic unchokes on the protocol’s properties. It haently
been argued that there is a fundamental trade-off betwese tivo
kinds of unchokes[[Q]. The current values used by the prot@men

intuition-based engineering choices; we would like to agrda
systematic evaluation of system behavior under differaraimeter
values.

Acknowledgments

We wish to thank the anonymous reviewers and Michael Sitaga
for their invaluable feedback.

8. REFERENCES

[1] inline client.
ﬁttp: / / www. bi ttorrent.conm downl oad. htn1|.

[2] BitTorrent Qr\nrifirqrir\n ki
ttp://wiki.theory.org/BitTorrent Specificati on/I.
[3] Instrumented BitTorrent clienptipf/lwaesop incia fr/

pl anet e/ Arnaud. |.ego Proje p2p_cd, htni #sof t war e.

[4] Parallel openssh tog m .

[5] PlanetLab platformht t p: / / waww. pl anet - | ab. or d.

[6] N.Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeamfluences
on Cooperation in BitTorrent Communities. Rtoc. of the Workshop on
Economics of Peer-to-Peer Systems (P2PEcon®biladelphia, PA, August
2005.

[7] A.R.Bharambe, C. Herley, and V. N. Padmanabhan. Anatyzind
Improving a BitTorrent Network's Performance Mechanismroc. of
Infocom’06 Barcelona, Spain, April 2006.

[8] B. Cohen. Incentives Build Robustness in BitTorrentPhoc. of the Workshop
on Economics of Peer-to-Peer Systems (P2PEcon®&keley, CA, June
2003.

[9] B.Fan, D.-M. Chiu, and J. C. Lui. The Delicate Tradeoff&itTorrent-like

File Sharing Protocol Design. roc. of ICNP’06 Santa Barbara, CA,

November 2006.

P. A. Felber and E. W. Biersack. Self-scaling NetworisGontent

Distribution. InProc. of the International Workshop on Self-* Properties in

Complex Information Systems (Self-*'0Bgertinoro, Italy, May 31-June 2,

2004.

L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. de@ments,

Analysis, and Modeling of BitTorrent-like Systems.Rmoc. of IMC'05

Berkeley, CA, October 2005.

M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. Namra, and

L. Garcés-Erice. Dissecting BitTorrent: Five Months in@fent’s Lifetime.

In Proc. of PAM'04 Antibes Juan-les-Pins, France, April 2004.

S. Jun and M. Ahamad. Incentives in BitTorrent InduceemRiding. InProc.

of the Workshop on Economics of Peer-to-Peer Systems (RE2RES,

Philadelphia, PA, August 2005.

T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and. Maloutsos. Is P2P

dying or just hiding? IrProc. of Globecom’04Dallas, TX, November

29-December 3, 2004.

[15] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest$tiand Choke

Algorithms Are Enough. IfProc. of IMC’06 Rio de Janeiro, Brazil, October

2006.

N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Explgrihe Robustness of

BitTorrent Peer-to-Peer Systen@oncurrency and Computation: Practice

and Experience2007. DOI: 10.1002/cpe.1187.

T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Frarg in BitTorrent

is Cheap. IrProc. of HotNets-VIrvine, CA, November 2006.

L. Massoulie and M. Vojnovic. Coupon Replication Syste InProc. of

SIGMETRICS’05Banff, Canada, June 2005.

M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, ahdVenkataramani.

Do incentives build robustness in BitTorrent?Rroc. of NSDI'07

Cambridge, MA, April 2007.

J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. TheoBi¢ht P2P

file-sharing system: Measurements and Analysi®iioc. of IPTPS'05

Ithaca, NY, February 2005.

D. Qiu and R. Srikant. Modeling and Performance Anayafi

BitTorrent-Like Peer-to-Peer Networks. Rroc. of SIGCOMM’04 Portland,

OR, August 30—September 3, 2004.

J. Shneidman, D. Parkes, and L. Massoulie. Faithfalmefternet

Algorithms. InProc. of the Workshop on Practice and Theory of Incentives

and Game Theory in Networked Systems (PINS®ditland, OR, September

2004.

M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Freéagdn BitTorrent

Networks with the Large View Exploit. IRroc. of IPTPS'07Bellevue, WA,

February 2007.

Y. Tian, D. Wu, and K. W. Ng. Modeling, Analysis and Impement for

BitTorrent-Like File Sharing Networks. IRroc. of Infocom’06Barcelona,

Spain, April 2006.

[10]

[11]

[12]

[13]

[14]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

http://www.bittorrent.com/download.html
http://wiki.theory.org/BitTorrentSpecification/
http://www-sop.inria.fr/planete/Arnaud.Legout/Projects/p2p_cd.html#software
http://www.theether.org/pssh/
http://www.planet-lab.org

