188 research outputs found

    Charge-transfer induced surface conductivity for a copper based inorganic-organic hybrid

    Get PDF
    Inorganic-organic hybrids are receiving increasing attention as they offer the opportunity to combine the robust properties of inorganic materials with the versatility of organic compounds. We have studied the electric properties of an inorganic-organic hybrid with the chemical formula: CuCl4(C6H5CH2CH2NH3)2. This material is a ferromagnetic insulator that can easily be processed from solution. We show that the surface conductivity of the hybrid can be increased by five orders of magnitude by covering the surface with an organic electron donor. This constitutes a novel method to dope perovskite-based materials and study their charge transport properties.

    CAGE Basic/Analysis Databases: the CAGE resource for comprehensive promoter analysis

    Get PDF
    Cap-analysis gene expression (CAGE) Basic and Analysis Databases store an original resource produced by CAGE, which measures expression levels of transcription starting sites by sequencing large amounts of transcript 5′ ends, termed CAGE tags. Millions of human and mouse high-quality CAGE tags derived from different conditions in >20 tissues consisting of >250 RNA samples are essential for identification of novel promoters and promoter characterization in the aspect of expression profile. CAGE Basic Database is a primary database of the CAGE resource, RNA samples, CAGE libraries, CAGE clone and tag sequences and so on. CAGE Analysis Database stores promoter related information, such as counts of related transcripts, CpG islands and conserved genome region. It also provides expression profiles at base pair and promoter levels. Both databases are based on the same framework, CAGE tag starting sites, tag clusters for defining promoters and transcriptional units (TUs). Their associations and TU attributes are available to find promoters of interest. These databases were provided for Functional Annotation Of Mouse 3 (FANTOM3), an international collaboration research project focusing on expanding the transcriptome and subsequent analyses. Now access is free for all users through the World Wide Web at

    Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High-k Dielectrics

    Get PDF
    We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport

    Precise engineering of quantum dot array coupling through their barrier widths

    Get PDF
    Quantum dots are known to confine electrons within their structure. Whenever they periodically aggregate into arrays and cooperative interactions arise, novel quantum properties suitable for technological applications show up. Control over the potential barriers existing between neighboring quantum dots is therefore essential to alter their mutual crosstalk. Here we show that precise engineering of the barrier width can be experimentally achieved on surfaces by a single atom substitution in a haloaromatic compound, which in turn tunes the confinement properties through the degree of quantum dot intercoupling. We achieved this by generating self-assembled molecular nanoporous networks that confine the twodimensional electron gas present at the surface. Indeed, these extended arrays form up on bulk surface and thin silver films alike, maintaining their overall interdot coupling. These findings pave the way to reach full control over two-dimensional electron gases by means of self-assembled molecular networks

    Differential Use of Signal Peptides and Membrane Domains Is a Common Occurrence in the Protein Output of Transcriptional Units

    Get PDF
    Membrane organization describes the orientation of a protein with respect to the membrane and can be determined by the presence, or absence, and organization within the protein sequence of two features: endoplasmic reticulum signal peptides and alpha-helical transmembrane domains. These features allow protein sequences to be classified into one of five membrane organization categories: soluble intracellular proteins, soluble secreted proteins, type I membrane proteins, type II membrane proteins, and multi-spanning membrane proteins. Generation of protein isoforms with variable membrane organizations can change a protein's subcellular localization or association with the membrane. Application of MemO, a membrane organization annotation pipeline, to the FANTOM3 Isoform Protein Sequence mouse protein set revealed that within the 8,032 transcriptional units (TUs) with multiple protein isoforms, 573 had variation in their use of signal peptides, 1,527 had variation in their use of transmembrane domains, and 615 generated protein isoforms from distinct membrane organization classes. The mechanisms underlying these transcript variations were analyzed. While TUs were identified encoding all pairwise combinations of membrane organization categories, the most common was conversion of membrane proteins to soluble proteins. Observed within our high-confidence set were 156 TUs predicted to generate both extracellular soluble and membrane proteins, and 217 TUs generating both intracellular soluble and membrane proteins. The differential use of endoplasmic reticulum signal peptides and transmembrane domains is a common occurrence within the variable protein output of TUs. The generation of protein isoforms that are targeted to multiple subcellular locations represents a major functional consequence of transcript variation within the mouse transcriptome

    Alternate transcription of the Toll-like receptor signaling cascade

    Get PDF
    BACKGROUND: Alternate splicing of key signaling molecules in the Toll-like receptor (Tlr) cascade has been shown to dramatically alter the signaling capacity of inflammatory cells, but it is not known how common this mechanism is. We provide transcriptional evidence of widespread alternate splicing in the Toll-like receptor signaling pathway, derived from a systematic analysis of the FANTOM3 mouse data set. Functional annotation of variant proteins was assessed in light of inflammatory signaling in mouse primary macrophages, and the expression of each variant transcript was assessed by splicing arrays. RESULTS: A total of 256 variant transcripts were identified, including novel variants of Tlr4, Ticam1, Tollip, Rac1, Irak1, 2 and 4, Mapk14/p38, Atf2 and Stat1. The expression of variant transcripts was assessed using custom-designed splicing arrays. We functionally tested the expression of Tlr4 transcripts under a range of cytokine conditions via northern and quantitative real-time polymerase chain reaction. The effects of variant Mapk14/p38 protein expression on macrophage survival were demonstrated. CONCLUSION: Members of the Toll-like receptor signaling pathway are highly alternatively spliced, producing a large number of novel proteins with the potential to functionally alter inflammatory outcomes. These variants are expressed in primary mouse macrophages in response to inflammatory mediators such as interferon-γ and lipopolysaccharide. Our data suggest a surprisingly common role for variant proteins in diversification/repression of inflammatory signaling

    Zigzag-Elongated Fused π-Electronic Core: A Molecular Design Strategy to Maximize Charge-Carrier Mobility

    Get PDF
    Printed and flexible electronics requires solution‐processable organic semiconductors with a carrier mobility (μ) of ≈10 cm2 V−1 s−1 as well as high chemical and thermal durability. In this study, chryseno[2,1‐b:8,7‐b′]dithiophene (ChDT) and its derivatives, which have a zigzag‐elongated fused π‐electronic core (π‐core) and a peculiar highest occupied molecular orbital (HOMO) configuration, are reported as materials with conceptually new semiconducting π‐cores. ChDT and its derivatives are prepared by a versatile synthetic procedure. A comprehensive investigation reveals that the ChDT π‐core exhibits increasing structural stability in the bulk crystal phase, and that it is unaffected by a variation of the transfer integral, induced by the perpetual molecular motion of organic materials owing to the combination of its molecular shape and its particular HOMO configuration. Notably, ChDT derivatives exhibit excellent chemical and thermal stability, high charge‐carrier mobility under ambient conditions (μ ≤ 10 cm2 V−1 s−1), and a crystal phase that is highly stable, even at temperatures above 250 °C

    High Performance Oxygen-bridged N-shaped Semiconductors with Stabilized Crystal Phase and Blue Luminescence

    Get PDF
    Here, we describe an oxygen-bridged N-shaped π-electron core, dinaphtho[2,3-d:2\u27,3\u27-d"]benzo[1,2-b:4,5-b\u27]difuran (DNBDF), as a new entity of organic semiconducting materials. Interestingly, by introduction of flexible alkyl chains at appropriate positions, DNBDF π-cores exhibit solution processability, a highly stabilized crystal phase, high mobility, and blue luminescence as a solid.平成26年度関西大学若手研究者育成経費JSPS科学研究費補助金 若手研究(B)(No.25810118)JSPS科学研究費補助金 基盤研究(C)(No.26410254)JSPS科学研究費補助金 基盤研究(B)(No.25288091

    Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs

    Get PDF
    The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species
    corecore