54 research outputs found

    Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Get PDF
    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission

    The Hayabusa Spacecraft Asteroid Multi-Band Imaging Camera: AMICA

    Full text link
    The Hayabusa Spacecraft Asteroid Multiband Imaging Camera (AMICA) has acquired more than 1400 multispectral and high-resolution images of its target asteroid, 25143 Itokawa, since late August 2005. In this paper, we summarize the design and performance of AMICA. In addition, we describe the calibration methods, assumptions, and models, based on measurements. Major calibration steps include corrections for linearity and modeling and subtraction of bias, dark current, read-out smear, and pixel-to-pixel responsivity variations. AMICA v-band data were calibrated to radiance using in-flight stellar observations. The other band data were calibrated to reflectance by comparing them to ground-based observations to avoid the uncertainty of the solar irradiation in those bands. We found that the AMICA signal was linear with respect to the input signal to an accuracy of << 1% when the signal level was < 3800 DN. We verified that the absolute radiance calibration of the AMICA v-band (0.55 micron) was accurate to 4% or less, the accuracy of the disk-integrated spectra with respect to the AMICA v-band was about 1%, and the pixel-to-pixel responsivity (flatfield) variation was 3% or less. The uncertainty in background zero-level was 5 DN. From wide-band observations of star clusters, we found that the AMICA optics have an effective focal length of 120.80 \pm 0.03 mm, yielding a field-of-view (FOV) of 5.83 deg x 5.69 deg. The resulting geometric distortion model was accurate to within a third of a pixel. We demonstrated an image-restoration technique using the point-spread functions of stars, and confirmed that the technique functions well in all loss-less images. An artifact not corrected by this calibration is scattered light associated with bright disks in the FOV.Comment: 107 pages, 22 figures, 9 tables. will appear in Icaru

    Phyllaemblicin B inhibits Coxsackie virus B3 induced apoptosis and myocarditis.

    Get PDF
    Coxsackie virus B3 (CVB3) is believed to be a major contributor to viral myocarditis since virus-associated apoptosis plays a role in the pathogenesis of experimental myocarditis. In this study, we investigated the in vitro and in vivo antiviral activities of Phyllaemblicin B, the main ellagitannin compound isolated from Phyllanthus emblica, a Chinese herb medicine, against CVB3. Herein we report that Phyllaemblicin B inhibited CVB3-mediated cytopathic effects on HeLa cells with an IC(50) value of 7.75+/-0.15microg/mL. In an in vivo assay, treatment with 12mgkg(-1)d(-1) Phyllaemblicin B reduced cardiac CVB3 titers, decreased the activities of LDH and CK in murine serum, and alleviated pathological damages of cardiac muscle in myocarditic mice. Moreover, Phyllaemblicin B clearly inhibited CVB3-associated apoptosis effects both in vitro and in vivo. These results show that Phyllaemblicin B exerts significant antiviral activities against CVB3. Therefore, Phyllaemblicin B may represent a potential therapeutic agent for viral myocarditis

    Linker-extended native cyanovirin-N facilitates PEGylation and potently inhibits HIV-1 by targeting the glycan ligand

    Get PDF
    Cyanovirin-N (CVN) potently inhibits human immunodeficiency virus type 1 (HIV-1) infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN. Therefore, linker-CVN (LCVN) was designed as a CVN derivative with a flexible and hydrophilic linker (Gly4Ser)3 at the N-terminus. The N-terminal α-amine of LCVN was PEGylated to create 10 K PEG-aldehyde (ALD)-LCVN. LCVN and 10 K PEG-ALD-LCVN retained the specificity and affinity of CVN for high mannose N-glycans. Moreover, LCVN exhibited significant anti-HIV-1 activity with attenuated cytotoxicity in the HaCaT keratinocyte cell line and MT-4 T lymphocyte cell lines. 10 K PEG-ALD-LCVN also efficiently inactivated HIV-1 with remarkably decreased cytotoxicity and pronounced cell-to-cell fusion inhibitory activity in vitro. The linker-extended CVN and the mono-PEGylated derivative were determined to be promising candidates for the development of an anti-HIV-1 agent. This derivatization approach provided a model for the PEGylation of biologic candidates without introducing point mutations. © 2014 Chen et al

    The antiviral protein cyanovirin-N: the current state of its production and applications.

    Get PDF
    Human immunodeficiency virus (HIV)/AIDS continues to spread worldwide, and most of the HIV-infected people living in developing countries have little or no access to highly active antiretroviral therapy. The development of efficient and low-cost microbicides to prevent sexual transmission of HIV should be given high priority because there is no vaccine available yet. Cyanovirin-N (CVN) is an entry inhibitor of HIV and many other viruses, and it represents a new generation of microbicide that has specific and potent activity, a different mechanism of action, and unusual chemicophysical stability. In vitro and in vivo antiviral tests suggested that the anti-HIV effect of CVN is stronger than a well-known gp120-targeted antibody (2G12) and another microbicide candidate, PRO2000. CVN is a cyanobacteria-derived protein that has special structural features, making the artificial production of this protein very difficult. In order to develop an efficient and relatively low-cost approach for large-scale production of recombinant CVN to satisfy medical use, this protein has been expressed in many systems by trial and error. Here, to summarize the potential and remaining challenges for the development of this protein into an HIV prevention agent, the progress in the structural mechanism determination, heterologous production and pharmacological evaluation of CVN is reviewed

    Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus.

    Get PDF
    Influenza A virus (IAV) infection is a major public health threat leading to significant morbidity and mortality. The emergence of drug-resistant virus strains highlights the urgent need to develop novel antiviral drugs with alternative modes of action. Pentagalloylglucose (PGG), a naturally occurring polyphenolic compound, possesses a broad spectrum of biological activities. In this study, we found that PGG has anti-influenza-virus activity, and investigated its possible mechanism(s) of action in vitro. Both pre-incubation of virus prior to infection and post-exposure of infected cells with PGG significantly inhibited virus yields. Influenza-virus-induced hemagglutination of chicken red blood cells was inhibited by PGG treatment, suggesting that PGG can inhibit IAV infection by interacting with the viral hemagglutinin. PGG did not affect viral protein synthesis or nuclear transport of viral nucleoprotein (NP) but greatly reduced plasma membrane accumulation of NP protein at the late stage of the replication cycle. Furthermore, PGG significantly reduced virus budding and progeny virus release from infected cells. This study revealed for the first time that PGG can inhibit IAV replication with a dual mode of action and offers new insights into its underlying mechanisms of antiviral action

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore