46 research outputs found

    Stage-Specific Effects of Candidate Heterochronic Genes on Variation in Developmental Time along an Altitudinal Cline of Drosophila melanogaster

    Get PDF
    Background: Previously, we have shown there is clinal variation for egg-to-adult developmental time along geographic gradients in Drosophila melanogaster. Further, we also have identified mutations in genes involved in metabolic and neurogenic pathways that affect development time (heterochronic genes). However, we do not know whether these loci affect variation in developmental time in natural populations. Methodology/Principal Findings: Here, we constructed second chromosome substitution lines from natural populations of Drosophila melanogaster from an altitudinal cline, and measured egg-adult development time for each line. We found not only a large amount of genetic variation for developmental time, but also positive associations of the development time with thermal amplitude and altitude. We performed genetic complementation tests using substitution lines with the longest and shortest developmental times and heterochronic mutations. We identified segregating variation for neurogenic and metabolic genes that largely affected the duration of the larval stages but had no impact on the timing of metamorphosis. Conclusions/Significance: Altitudinal clinal variation in developmental time for natural chromosome substitution lines provides a unique opportunity to dissect the response of heterochronic genes to environmental gradients. Ontogenetic stage-specific variation in invected, mastermind, cricklet and CG14591 may affect natural variation in development time an

    Male Seminal Fluid Substances Affect Sperm Competition Success and Female Reproductive Behavior in a Seed Beetle

    No full text
    Male seminal fluid proteins are known to affect female reproductive behavior and physiology by reducing mating receptivity and by increasing egg production rates. Such substances are also though to increase the competitive fertilization success of males, but the empirical foundation for this tenet is restricted. Here, we examined the effects of injections of size-fractioned protein extracts from male reproductive organs on both male competitive fertilization success (i.e., P2 in double mating experiments) and female reproduction in the seed beetle Callosobruchus maculatus. We found that extracts of male seminal vesicles and ejaculatory ducts increased competitive fertilization success when males mated with females 1 day after the females' initial mating, while extracts from accessory glands and testes increased competitive fertilization success when males mated with females 2 days after the females' initial mating. Moreover, different size fractions of seminal fluid proteins had distinct and partly antagonistic effects on male competitive fertilization success. Collectively, our experiments show that several different seminal fluid proteins, deriving from different parts in the male reproductive tract and of different molecular weight, affect male competitive fertilization success in C. maculatus. Our results highlight the diverse effects of seminal fluid proteins and show that the function of such proteins can be contingent upon female mating status. We also document effects of different size fractions on female mating receptivity and egg laying rates, which can serve as a basis for future efforts to identify the molecular identity of seminal fluid proteins and their function in this model species

    A quantitative genetic study of starvation resistance at different geographic scales in natural populations of Drosophila melanogaster

    Get PDF
    Food shortage is a stress factor that commonly affects organisms in nature. Resistance to food shortage or starvation resistance (SR) is a complex quantitative trait with direct implications on fitness. However, surveys of natural genetic variation in SR at different geographic scales are scarce. Here, we have measured variation in SR in sets of lines derived from nine natural populations of Drosophila melanogaster collected in western Argentina. Our study shows that within population variation explained a larger proportion of overall phenotypic variance (80%) than among populations (72%). We also noticed that an important fraction of variation was sex-specific. Overall females were more resistant to starvation than males; however, the magnitude of the sexual dimorphism (SD) in SR varied among lines and explained a significant fraction of phenotypic variance in all populations. Estimates of cross-sex genetic correlations suggest that the genetic architecture of SR is only partially shared between sexes in the populations examined, thus, facilitating further evolution of the SD.Fil: Goenaga, Julieta. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Fanara, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hasson, Esteban Ruben. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Data from: Direct and indirect genetic effects of sex-specific mitonuclear epistasis on reproductive ageing

    No full text
    Mitochondria are involved in ageing and their function requires coordinated action of both mitochondrial and nuclear genes. Epistasis between the two genomes can influence lifespan but whether this also holds for reproductive senescence is unclear. Maternal inheritance of mitochondria predicts sex differences in the efficacy of selection on mitonuclear genotypes that should result in differences between females and males in mitochondrial genetic effects. Mitonuclear genotype of a focal individual may also indirectly affect trait expression in the mating partner. We tested these predictions in the seed beetle Callosobruchus maculatus, using introgression lines harbouring distinct mitonuclear genotypes. Our results reveal both direct and indirect sex-specific effects of mitonuclear epistasis on reproductive ageing. Females harbouring coadapted mitonuclear genotypes showed higher lifetime fecundity due to slower senescence relative to novel mitonuclear combinations. We found no evidence for mitonuclear coadaptation in males. Mitonuclear epistasis not only affected age-specific ejaculate weight, but also influenced male age-dependent indirect effects on traits expressed by their female partners (fecundity, egg size, longevity). These results demonstrate important consequences of sex-specific mitonuclear epistasis for both mating partners, consistent with a role for mitonuclear genetic constraints upon sex-specific adaptive evolution

    Within-species divergence in the seminal fluid proteome and its effect on male and female reproduction in a beetle

    No full text
    Background: Male seminal fluid proteins (SFPs), transferred to females during mating, are important reproductive proteins that have multifarious effects on female reproductive physiology and that often show remarkably rapid and divergent evolution. Inferences regarding natural selection on SFPs are based primarily on interspecific comparative studies, and our understanding of natural within-species variation in SFPs and whether this relates to reproductive phenotypes is very limited. Here, we introduce an empirical strategy to study intraspecific variation in and selection upon the seminal fluid proteome. We then apply this in a study of 15 distinct populations of the seed beetle Callosobruchus maculatus. Results: Phenotypic assays of these populations showed significant differences in reproductive phenotypes (male success in sperm competition and male ability to stimulate female fecundity). A quantitative proteomic study of replicated samples of male accessory glands revealed a large number of potential SFPs, of which >= 127 were found to be transferred to females at mating. Moreover, population divergence in relative SFP abundance across populations was large and remarkably multidimensional. Most importantly, variation in male SFP abundance across populations was associated with male sperm competition success and male ability to stimulate female egg production. Conclusions: Our study provides the first direct evidence for postmating sexual selection on standing intraspecific variation in SFP abundance and the pattern of divergence across populations in the seminal fluid proteome match the pattern predicted by the postmating sexual selection paradigm for SFP evolution. Our findings provide novel support for the hypothesis that sexual selection on SFPs is an important engine of incipient speciation

    Within-species divergence in the seminal fluid proteome and its effect on male and female reproduction in a beetle

    Get PDF
    Background: Male seminal fluid proteins (SFPs), transferred to females during mating, are important reproductive proteins that have multifarious effects on female reproductive physiology and that often show remarkably rapid and divergent evolution. Inferences regarding natural selection on SFPs are based primarily on interspecific comparative studies, and our understanding of natural within-species variation in SFPs and whether this relates to reproductive phenotypes is very limited. Here, we introduce an empirical strategy to study intraspecific variation in and selection upon the seminal fluid proteome. We then apply this in a study of 15 distinct populations of the seed beetle Callosobruchus maculatus. Results: Phenotypic assays of these populations showed significant differences in reproductive phenotypes (male success in sperm competition and male ability to stimulate female fecundity). A quantitative proteomic study of replicated samples of male accessory glands revealed a large number of potential SFPs, of which >= 127 were found to be transferred to females at mating. Moreover, population divergence in relative SFP abundance across populations was large and remarkably multidimensional. Most importantly, variation in male SFP abundance across populations was associated with male sperm competition success and male ability to stimulate female egg production. Conclusions: Our study provides the first direct evidence for postmating sexual selection on standing intraspecific variation in SFP abundance and the pattern of divergence across populations in the seminal fluid proteome match the pattern predicted by the postmating sexual selection paradigm for SFP evolution. Our findings provide novel support for the hypothesis that sexual selection on SFPs is an important engine of incipient speciation

    Latitudinal Variation in Starvation Resistance is Explained by Lipid Content in Natural Populations of Drosophila melanogaster

    Get PDF
    One of the most common environmental stressors is a shortage or suboptimal quality of food, thus all animals deal with periods of starvation. In the present study we examine variation in starvation resistance, longevity and body lipid content and the correlations between traits along an environmental gradient using isofemale lines recently derived from natural populations of Drosophila melanogaster from South America. The use of isofemale lines and controlled rearing laboratory conditions allows us to investigate within and among population components of genetic variation and the potential associations among starvation resistance, longevity and body lipid content. All these traits were analyzed separately in females and males, improving our understanding of sexual dimorphism. Our results revealed significant differences among populations in starvation resistance and longevity. Actually, the opposing latitudinal cline detected for starvation resistance suggests that natural selection played an essential role in shaping the pattern of geographic variation in this trait. Moreover, we also detected a positive relationship between starvation resistance and body lipid content in both sexes, providing evidence for a physiological and/or evolutionary association between these traits. Conversely, starvation resistance was not correlated with longevity indicating that these traits might be enabled to evolve independently. Finally, our study reveals that there is abundant within population genetic variation for all traits that may be maintained by sex-specific effects.Fil: Goenaga, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Fanara, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Male Seminal Fluid Substances Affect Sperm Competition Success and Female Reproductive Behavior in a Seed Beetle

    No full text
    Male seminal fluid proteins are known to affect female reproductive behavior and physiology by reducing mating receptivity and by increasing egg production rates. Such substances are also though to increase the competitive fertilization success of males, but the empirical foundation for this tenet is restricted. Here, we examined the effects of injections of size-fractioned protein extracts from male reproductive organs on both male competitive fertilization success (i.e., P2 in double mating experiments) and female reproduction in the seed beetle Callosobruchus maculatus. We found that extracts of male seminal vesicles and ejaculatory ducts increased competitive fertilization success when males mated with females 1 day after the females' initial mating, while extracts from accessory glands and testes increased competitive fertilization success when males mated with females 2 days after the females' initial mating. Moreover, different size fractions of seminal fluid proteins had distinct and partly antagonistic effects on male competitive fertilization success. Collectively, our experiments show that several different seminal fluid proteins, deriving from different parts in the male reproductive tract and of different molecular weight, affect male competitive fertilization success in C. maculatus. Our results highlight the diverse effects of seminal fluid proteins and show that the function of such proteins can be contingent upon female mating status. We also document effects of different size fractions on female mating receptivity and egg laying rates, which can serve as a basis for future efforts to identify the molecular identity of seminal fluid proteins and their function in this model species

    Yamane et al data

    No full text
    Data file containing all primary data; provided by T Yamane
    corecore