30 research outputs found

    A Small Molecule p75NTR Ligand, LM11A-31, Reverses Cholinergic Neurite Dystrophy in Alzheimer's Disease Mouse Models with Mid- to Late-Stage Disease Progression

    Get PDF
    Degeneration of basal forebrain cholinergic neurons contributes significantly to the cognitive deficits associated with Alzheimer's disease (AD) and has been attributed to aberrant signaling through the neurotrophin receptor p75 (p75NTR). Thus, modulating p75NTR signaling is considered a promising therapeutic strategy for AD. Accordingly, our laboratory has developed small molecule p75NTR ligands that increase survival signaling and inhibit amyloid-β-induced degenerative signaling in in vitro studies. Previous work found that a lead p75NTR ligand, LM11A-31, prevents degeneration of cholinergic neurites when given to an AD mouse model in the early stages of disease pathology. To extend its potential clinical applications, we sought to determine whether LM11A-31 could reverse cholinergic neurite atrophy when treatment begins in AD mouse models having mid- to late stages of pathology. Reversing pathology may have particular clinical relevance as most AD studies involve patients that are at an advanced pathological stage. In this study, LM11A-31 (50 or 75 mg/kg) was administered orally to two AD mouse models, Thy-1 hAPPLond/Swe (APPL/S) and Tg2576, at age ranges during which marked AD-like pathology manifests. In mid-stage male APPL/S mice, LM11A-31 administered for 3 months starting at 6–8 months of age prevented and/or reversed atrophy of basal forebrain cholinergic neurites and cortical dystrophic neurites. Importantly, a 1 month LM11A-31 treatment given to male APPL/S mice (12–13 months old) with late-stage pathology reversed the degeneration of cholinergic neurites in basal forebrain, ameliorated cortical dystrophic neurites, and normalized increased basal forebrain levels of p75NTR. Similar results were seen in female Tg2576 mice. These findings suggest that LM11A-31 can reduce and/or reverse fundamental AD pathologies in late-stage AD mice. Thus, targeting p75NTR is a promising approach to reducing AD-related degenerative processes that have progressed beyond early stages

    The p75 Neurotrophin Receptor Promotes Amyloid- (1-42)-Induced Neuritic Dystrophy In Vitro and In Vivo

    Get PDF
    Oligomeric forms of amyloid-beta (Abeta) are thought to play a causal role in Alzheimer's disease (AD), and the p75 neurotrophin receptor (p75(NTR)) has been implicated in Abeta-induced neurodegeneration. To further define the functions of p75(NTR) in AD, we examined the interaction of oligomeric Abeta(1-42) with p75(NTR), and the effects of that interaction on neurite integrity in neuron cultures and in a chronic AD mouse model. Atomic force microscopy was used to ascertain the aggregated state of Abeta, and fluorescence resonance energy transfer analysis revealed that Abeta oligomers interact with the extracellular domain of p75(NTR). In vitro studies of Abeta-induced death in neuron cultures isolated from wild-type and p75(NTR-/-) mice, in which the p75(NTR) extracellular domain is deleted, showed reduced sensitivity of mutant cells to Abeta-induced cell death. Interestingly, Abeta-induced neuritic dystrophy and activation of c-Jun, a known mediator of Abeta-induced deleterious signaling, were completely prevented in p75(NTR-/-) neuron cultures. Thy1-hAPP(Lond/Swe) x p75(NTR-/-) mice exhibited significantly diminished hippocampal neuritic dystrophy and complete reversal of basal forebrain cholinergic neurite degeneration relative to those expressing wild-type p75(NTR). Abeta levels were not affected, suggesting that removal of p75(NTR) extracellular domain reduced the ability of excess Abeta to promote neuritic degeneration. These findings indicate that although p75(NTR) likely does not mediate all Abeta effects, it does play a significant role in enabling Abeta-induced neurodegeneration in vitro and in vivo, establishing p75(NTR) as an important therapeutic target for AD

    Small Molecule, Non-Peptide p75NTR Ligands Inhibit Aβ-Induced Neurodegeneration and Synaptic Impairment

    Get PDF
    The p75 neurotrophin receptor (p75NTR) is expressed by neurons particularly vulnerable in Alzheimer's disease (AD). We tested the hypothesis that non-peptide, small molecule p75NTR ligands found to promote survival signaling might prevent Aβ-induced degeneration and synaptic dysfunction. These ligands inhibited Aβ-induced neuritic dystrophy, death of cultured neurons and Aβ-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Aβ-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3β and c-Jun, and tau phosphorylation, and prevented Aβ-induced inactivation of AKT and CREB. Finally, a p75NTR ligand blocked Aβ-induced hippocampal LTP impairment. These studies support an extensive intersection between p75NTR signaling and Aβ pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Aβ-induced neuronal dystrophy and death

    Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.

    Get PDF
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352

    Quantitative MRI reveals widespread, network-specific myelination change during generalized epilepsy progression

    No full text
    Activity-dependent myelination is a fundamental mode of brain plasticity which significantly influences network function. We recently discovered that absence seizures, which occur in multiple forms of generalized epilepsy, can induce activity-dependent myelination, which in turn promotes further progression of epilepsy. Structural alterations of myelin are likely to be widespread, given that absence seizures arise from an extensive thalamocortical network involving frontoparietal regions of the bilateral hemispheres. However, the temporal course and spatial extent of myelin plasticity is unknown, due to limitations of gold-standard histological methods such as electron microscopy (EM). In this study, we leveraged magnetization transfer and diffusion MRI for estimation of g-ratios across major white matter tracts in a mouse model of generalized epilepsy with progressive absence seizures. EM was performed on the same brains after MRI. After seizure progression, we found increased myelination (decreased g-ratios) throughout the anterior portion (genu-to-body) of the corpus callosum but not in the posterior portion (body-splenium) nor in the fornix or the internal capsule. Curves obtained from averaging g-ratio values at every longitudinal point of the corpus callosum were statistically different with p<0.001. Seizure-associated myelin differences found in the corpus callosum body with MRI were statistically significant (p = 0.0027) and were concordant with EM in the same region (p = 0.01). Notably, these differences were not detected by diffusion tensor imaging. This study reveals widespread myelin structural change that is specific to the absence seizure network. Furthermore, our findings demonstrate the potential utility and importance of MRI-based g-ratio estimation to non-invasively detect myelin plasticity

    A small molecule p75NTR ligand, LM11A-31, reverses cholinergic neurite dystrophy in Alzheimer's disease mouse models with mid- to late-stage disease progression.

    No full text
    Degeneration of basal forebrain cholinergic neurons contributes significantly to the cognitive deficits associated with Alzheimer's disease (AD) and has been attributed to aberrant signaling through the neurotrophin receptor p75 (p75NTR). Thus, modulating p75NTR signaling is considered a promising therapeutic strategy for AD. Accordingly, our laboratory has developed small molecule p75NTR ligands that increase survival signaling and inhibit amyloid-β-induced degenerative signaling in in vitro studies. Previous work found that a lead p75NTR ligand, LM11A-31, prevents degeneration of cholinergic neurites when given to an AD mouse model in the early stages of disease pathology. To extend its potential clinical applications, we sought to determine whether LM11A-31 could reverse cholinergic neurite atrophy when treatment begins in AD mouse models having mid- to late stages of pathology. Reversing pathology may have particular clinical relevance as most AD studies involve patients that are at an advanced pathological stage. In this study, LM11A-31 (50 or 75 mg/kg) was administered orally to two AD mouse models, Thy-1 hAPPLond/Swe (APPL/S) and Tg2576, at age ranges during which marked AD-like pathology manifests. In mid-stage male APPL/S mice, LM11A-31 administered for 3 months starting at 6-8 months of age prevented and/or reversed atrophy of basal forebrain cholinergic neurites and cortical dystrophic neurites. Importantly, a 1 month LM11A-31 treatment given to male APPL/S mice (12-13 months old) with late-stage pathology reversed the degeneration of cholinergic neurites in basal forebrain, ameliorated cortical dystrophic neurites, and normalized increased basal forebrain levels of p75NTR. Similar results were seen in female Tg2576 mice. These findings suggest that LM11A-31 can reduce and/or reverse fundamental AD pathologies in late-stage AD mice. Thus, targeting p75NTR is a promising approach to reducing AD-related degenerative processes that have progressed beyond early stages

    LM11A-31 prevents and/or reverses basal forebrain cholinergic neurite atrophy in mid-stage APP<sup>L/S</sup> mice.

    No full text
    <p>Representative photomicrographs show ChAT-immunostained neurons in VDB of the basal forebrain of (<b><i>A</i></b>) WT Veh, (<b><i>B</i></b>) WT LM11A-31 (-31), (<b><i>C</i></b>) APP<sup>L/S</sup> (APP) Veh, and (<b><i>D</i></b>) APP-31 mice at 9–11 months of age. Arrowheads indicate the distal part of neurites. Below each photomicrograph are reconstructed drawings from Neurolucida tracings of two ChAT-stained neurons per treatment group. The left drawing is the neurite and corresponding soma indicated by the arrowhead in the photomicrograph (orientations were altered). The right drawing is of a cell outside the field displayed in the photomicrograph but within the field analyzed. Scale bar in A = 20 µm and also applies to the line drawings. Quantification indicates that treating APP<sup>L/S</sup> mice with LM11A-31 for 3 months increases the (<b><i>E</i></b>) length, (<b><i>F</i></b>) area occupied by, and (<b><i>G</i></b>) branching of BFCN neurites compared to those given vehicle. Statistical significance was determined using an ANOVA with Dunnett's post-hoc test and, for branching, a 2×2 contingency table with Fisher's exact test (WT Veh, n = 9 mice; WT-31, n = 10; APP Veh, n = 10; APP-31, n = 9). <sup>**</sup>p≤0.01 and <sup>***</sup>p<0.001 vs. WT Veh; <sup>+</sup>p≤0.05 and <sup>++</sup>p≤0.01 vs. APP Veh.</p

    Body weight and water consumption are not affected by LM11A-31 treatment in Tg2576 mice.

    No full text
    <p>(<b><i>A</i></b>) Body weight of 17 month old female Tg2576 mice treated with LM11A-31 for 3 months (nTg-Veh, n = 7 mice; Tg2576-Veh, n = 6; Tg2576-31, n = 5; nTg–LM11A-31, n = 4). Starting at treatment week 6, Tg2576 mice weighed less than WT mice; LM11A-31 had no effect on this measure. Statistical significance was determined using repeated measures ANOVA with Dunnett's post-hoc test. (<b><i>B</i></b>) Average grams of water consumed by Tg2576 mice over 3 days was significantly greater than nTg mice; LM11A-31 had no effect on this measure. Statistical significance was determined using two-tailed Student's t-test. *p≤0.05 vs. nTg Veh.</p

    LM11A-31 prevents cholinergic dystrophic neurites in cortex of late-stage APP<sup>L/S</sup> mice.

    No full text
    <p>Representative photomicrographs show clusters of cholinergic dystrophic neurites in the cortex of APP<sup>L/S</sup> (APP) Veh (<b><i>A</i></b>) and APP-31 (<b><i>B</i></b>) mice. Scale bar in B = 50 µm. Quantitative analysis showed that LM11A-31 did not significantly affect the total area (<b><i>C</i></b>) or number (<b><i>D</i></b>) of clusters but did decrease the size or mean area per cluster (<b><i>E</i></b>). Statistical significance was determined using a two-tailed Student's t-test. <sup>++</sup>p≤0.01 vs. APP Veh.</p
    corecore