36 research outputs found

    The risk of vector-borne disease exposure in rubber plantations of northern Lao PDR

    Get PDF
    Unprecedented economic growth in South-East Asia has encouraged the expansion of rubber plantations. Outbreaks of vector-borne diseases occur in these plantations, yet data on the vector dynamics is limited. In this thesis I describe the mosquito ecology in rubber plantations compared to neighbouring habitats in northern Lao PDR, to assess the risk of vector-borne diseases for rubber workers and villagers, and to identify how to mitigate these risks. I carried out a study to identify an ethically sound alternatives to human landing catches (HLC). The human-baited Double Net trap (HDN) collected similar numbers of Anopheles and Culex as HLC, but under-estimated the number of Aedes albopictus. As both HLC and HDN are crude ways of identifying the human-biting rate, the HDN is a representative method to estimate the human-biting rate outdoors without exposing collectors to mosquito bites. Using the HDN, I compared the adult mosquito dynamics in the secondary forests, immature rubber plantations, mature rubber plantations and villages. A total of 113 species were identified, including 61 species not documented in Lao PDR before The highest number of mosquitoes were collected in the secondary forests. Three of the four most common species found were vector species; the dengue and chikungunya vector Ae. albopictus, the lymphatic filariasis vector Ar. kesseli and the JE vector Cx. vishnui. Additionally, in all habitats a daily exposure to malaria vectors was found. To assess the risk of exposure to vector-borne diseases I explored the local human behaviour using sociological methods. Compared to staying in the village, dengue exposure risk increased when working in the plantations, which was exasperated when also living in these man-made forests. By contrast, malaria vector exposure risk decreased when living in the plantations. I identified the characteristics of mosquito breeding sites in rubber plantations and villages. Aedes albopictus immature stages were most frequently collected from tyres and latex collection cups in the mature rubber plantations and from tyres and water containers ( 10 L) in the villages. A majority of the Cx. quinquefasciatus were collected from water containers ( 10 L) in the mature rubber plantations and villages. Anopheles dirus s.l. were mostly collected from puddles in the immature rubber plantations and villages. This thesis emphasizes the importance of implementing mosquito control in the rubber plantations for the control of dengue disease. Larval control and personal protection methods are possible vector control methods for our study area. The successful implementation of vector control requires an inter-sectoral approach, with strong collaboration between the health sector, rubber industry and local communities

    Risk of exposure to potential vector mosquitoes for rural workers in Northern Lao PDR

    Get PDF
    Background One major consequence of economic development in South-East Asia has been a rapid expansion of rubber plantations, in which outbreaks of dengue and malaria have occurred. Here we explored the difference in risk of exposure to potential dengue, Japanese encephalitis (JE), and malaria vectors between rubber workers and those engaged in traditional forest activities in northern Laos PDR. Methodology/Principal findings Adult mosquitoes were collected for nine months in secondary forests, mature and immature rubber plantations, and villages. Human behavior data were collected using rapid participatory rural appraisals and surveys. Exposure risk was assessed by combining vector and human behavior and calculating the basic reproduction number (R0) in different typologies. Compared to those that stayed in the village, the risk of dengue vector exposure was higher for those that visited the secondary forests during the day (odds ratio (OR) 36.0), for those living and working in rubber plantations (OR 16.2) and for those that tapped rubber (OR 3.2). Exposure to JE vectors was also higher in the forest (OR 1.4) and, similar when working (OR 1.0) and living in the plantations (OR 0.8). Exposure to malaria vectors was greater in the forest (OR 1.3), similar when working in the plantations (OR 0.9) and lower when living in the plantations (OR 0.6). R0 for dengue was >2.8 for all habitats surveyed, except villages where R0≤0.06. The main malaria vector in all habitats was Anopheles maculatus s.l. in the rainy season and An. minimus s.l. in the dry season. Conclusions/Significance The highest risk of exposure to vector mosquitoes occurred when people visit natural forests. However, since rubber workers spend long periods in the rubber plantations, their risk of exposure is increased greatly compared to those who temporarily enter natural forests or remain in the village. This study highlights the necessity of broadening mosquito control to include rubber plantations

    Diversity of Mosquitoes (Diptera: Culicidae) Attracted to Human Subjects in Rubber Plantations, Secondary Forests, and Villages in Luang Prabang Province, Northern Lao PDR

    Get PDF
    The impact of the rapid expansion of rubber plantations in South-East Asia on mosquito populations is uncertain. We compared the abundance and diversity of adult mosquitoes using human-baited traps in four typical rural habitats in northern Lao PDR: secondary forests, immature rubber plantations, mature rubber plantations, and villages. Generalized estimating equations were used to explore differences in mosquito abundance between habitats, and Simpson’s diversity index was used to measure species diversity. Over nine months, 24,927 female mosquitoes were collected, including 51 species newly recorded in Lao PDR. A list of the 114 mosquito species identified is included. More mosquitoes, including vector species, were collected in the secondary forest than immature rubber plantations (rainy season, odds ratio [OR] 0.33, 95% confidence interval [CI] 0.31–0.36; dry season, 0.46, 95% CI 0.41–0.51), mature rubber plantations (rainy season, OR 0.25, 95% CI 0.23–0.27; dry season, OR 0.25, 95% CI 0.22–0.28), and villages (rainy season, OR 0.13, 95% CI 0.12–0.14; dry season, 0.20, 95% CI 0.18–0.23). All habitats showed high species diversity (Simpson’s indexes between 0.82–0.86) with vectors of dengue, Japanese encephalitis (JE), lymphatic filariasis, and malaria. In the secondary forests and rubber plantations, Aedes albopictus (Skuse), a dengue vector, was the dominant mosquito species, while in the villages, Culex vishnui (Theobald), a JE vector, was most common. This study has increased the overall knowledge of mosquito fauna in Lao PDR. The high abundance of Ae. albopictus in natural and man-made forests warrants concern, with vector control measures currently only implemented in cities and villages

    Mapping trends in insecticide resistance phenotypes in African malaria vectors

    Get PDF
    Mitigating the threat of insecticide resistance in African malaria vector populations requires comprehensive information about where resistance occurs, to what degree, and how this has changed over time. Estimating these trends is complicated by the sparse, heterogeneous distribution of observations of resistance phenotypes in field populations. We use 6,423 observations of the prevalence of resistance to the most important vector control insecticides to inform a Bayesian geostatistical ensemble modelling approach, generating fine-scale predictive maps of resistance phenotypes in mosquitoes from the Anopheles gambiae complex across Africa. Our models are informed by a suite of 111 predictor variables describing potential drivers of selection for resistance. Our maps show alarming increases in the prevalence of resistance to pyrethroids and DDT across sub-Saharan Africa from 2005 to 2017, with mean mortality following insecticide exposure declining from almost 100% to less than 30% in some areas, as well as substantial spatial variation in resistance trends

    Indoor residual spraying for malaria control in sub-Saharan Africa 1997 to 2017: an adjusted retrospective analysis

    Get PDF
    Indoor residual spraying (IRS) is a key tool for controlling and eliminating malaria by targeting vectors. To support the development of effective intervention strategies it is important to understand the impact of vector control tools on malaria incidence and on the spread of insecticide resistance. In 2006, the World Health Organization (WHO) stated that countries should report on coverage and impact of IRS, yet IRS coverage data are still sparse and unspecific. Here, the subnational coverage of IRS across sub‑Saharan Africa for the four main insecticide classes from 1997 to 2017 were estimated

    Assessing the impact of the addition of pyriproxyfen on the durability of permethrin-treated bed nets in Burkina Faso: a compound-randomized controlled trial

    Get PDF
    Background Long-lasting insecticidal nets (LLINs) treated with pyrethroids are the foundation of malaria control in sub-Saharan Africa. Rising pyrethroid resistance in vectors, however, has driven the development of alternative net formulations. Here the durability of polyethylene nets with a novel combination of a pyrethroid, permethrin, and the insect juvenile hormone mimic, pyriproxyfen (PPF), compared to a standard permethrin LLIN, was assessed in rural Burkina Faso. Methods A compound-randomized controlled trial was completed in two villages. In one village 326 of the PPF-permethrin nets (Olyset Duo) and 327 standard LLINs (Olyset) were distributed to assess bioefficacy. In a second village, 170 PPF-permethrin nets and 376 LLINs were distributed to assess survivorship. Nets were followed at 6-monthly intervals for 3 years. Bioefficacy was assessed by exposing permethrin-susceptible and resistant Anopheles gambiae sensu lato mosquito strains to standard World Health Organization (WHO) cone and tunnel tests with impacts on fertility measured in the resistant strain. Insecticide content was measured using high-performance liquid chromatography. LLIN survivorship was recorded with a questionnaire and assessed by comparing the physical integrity using the proportionate hole index (pHI). Results The PPF-permethrin net met WHO bioefficacy criteria (≥ 80% mortality or ≥ 95% knockdown) for the first 18 months, compared to 6 months for the standard LLIN. Mean mosquito mortality for PPF-permethrin nets, across all time points, was 8.6% (CI 2.6–14.6%) higher than the standard LLIN. Fertility rates were reduced after PPF-permethrin net exposure at 1-month post distribution, but not later. Permethrin content of both types of nets remained within the target range of 20 g/kg ± 25% for 242/248 nets tested. The pyriproxyfen content of PPF-permethrin nets declined by 54%, from 10.4 g/kg (CI 10.2–10.6) to 4.7 g/kg (CI 3.5–6.0, p < 0.001) over 36 months. Net survivorship was poor, with only 13% of PPF-permethrin nets and 12% of LLINs still present in the original household after 36 months. There was no difference in the fabric integrity or survivorship between the two net types. Conclusion The PPF-permethrin net, Olyset Duo, met or exceeded the performance of the WHO-recommended standard LLIN (Olyset) in the current study but both net types failed the 3-year WHO bioefficacy criteria

    Strengthening adult mosquito surveillance in Africa for disease control: Learning from the present

    Get PDF
    Mosquito surveillance is essential to successfully control and eliminate mosquito-borne diseases. Yet, it is often done by numerous organizations with little collaboration, incomplete understanding of existing gaps, and limited long-term vision. There is a clear disconnect between entomological and epidemiological indices, with entomological data informing control efforts inadequately. Here we discuss current mosquito surveillance practises across the heterogenous disease landscape in Africa. We advocate for the development of mosquito surveillance strategic plans to increase the impact and functionality of mosquito surveillance. We urge for a proactive approach to set up centralized mosquito data systems under custodian of national governments, focus on epidemiologically relevant mosquito data and increase robustness of mosquito surveillance using a more spatially explicit sampling design

    Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii

    Get PDF
    In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii

    POne_Laos_Albo_bionomics_rawdata_Adultsurvey

    No full text
    Raw data of the Ae. albopictus adult surve

    POne_Laos_Albo_bionomics_rawdata_Larvalsurvey

    No full text
    Raw data of the Ae. albopictus larval surve
    corecore