16 research outputs found
Molecular cloning of the human rad gene: gene structure and complete nucleotide sequence
AbstractWe have isolated and sequenced human genomic DNA clones encoding the Ras-related GTP-binding protein, Rad. The gene spans 3.75 kb and consists of five exons and four introns. Translation initiates from the first of two in-frame methionine residues in the second exon. Several potential transcription cis-elements were revealed throughout the 1.7 kb 5′-flanking region, including ‘E box’ and CArG binding sites for regulators of transcription in muscle
The Basis for Weekly Insulin Therapy:Evolving Evidence With Insulin Icodec and Insulin Efsitora Alfa
Basal insulin continues to be a vital part of therapy for many people with diabetes. First attempts to prolong the duration of insulin formulations were through the development of suspensions that required homogenization prior to injection. These insulins, which required once- or twice-daily injections, introduced wide variations in insulin exposure contributing to unpredictable effects on glycemia. Advances over the last 2 decades have resulted in long-acting, soluble basal insulin analogues with prolonged and less variable pharmacokinetic exposure, improving their efficacy and safety, notably by reducing nocturnal hypoglycemia. However, adherence and persistence with once-daily basal insulin treatment remains low for many reasons including hypoglycemia concerns and treatment burden. A soluble basal insulin with a longer and flatter exposure profile could reduce pharmacodynamic variability, potentially reducing hypoglycemia, have similar efficacy to once-daily basal insulins, simplify dosing regimens, and improve treatment adherence. Insulin icodec (Novo Nordisk) and insulin efsitora alfa (basal insulin Fc [BIF], Eli Lilly and Company) are 2 such insulins designed for once-weekly administration, which have the potential to provide a further advance in basal insulin replacement. Icodec and efsitora phase 2 clinical trials, as well as data from the phase 3 icodec program indicate that once-weekly insulins provide comparable glycemic control to once-daily analogues, with a similar risk of hypoglycemia. This manuscript details the technology used in the development of once-weekly basal insulins. It highlights the clinical rationale and potential benefits of these weekly insulins while also discussing the limitations and challenges these molecules could pose in clinical practice.</p
Language considerations for children of parents with substance use disorders
Abstract Parents with substance use disorders are highly stigmatized by multiple systems (e.g., healthcare, education, legal, social). As a result, they are more likely to experience discrimination and health inequities [1, 2]. Children of parents with substance use disorders often do not fare any better, as they frequently experience stigma and poorer outcomes by association [3, 4]. Calls to action for person-centered language for alcohol and other drug problems have led to improved terminology [5–8]. Despite a long history of stigmatizing, offensive labels such as “children of alcoholics” and “crack babies,” children have been left out of person-centered language initiatives. Children of parents with substance use disorders can feel invisible, shameful, isolated, and forgotten—particularly in treatment settings when programming is centered on the parent [9, 10]. Person-centered language is shown to improve treatment outcomes and reduce stigma [11, 12]. Therefore, we need to adhere to consistent, non-stigmatizing terminology when referencing children of parents with substance use disorders. Most importantly, we must center the voices and preferences of those with lived experience to enact meaningful change and effective resource allocation
Blockade of glucagon signaling prevents or reverses diabetes onset only if residual β-cells persist
Glucagon secretion dysregulation in diabetes fosters hyperglycemia. Recent studies report that mice lacking glucagon receptor (Gcgr(-/-)) do not develop diabetes following streptozotocin (STZ)-mediated ablation of insulin-producing β-cells. Here, we show that diabetes prevention in STZ-treated Gcgr(-/-) animals requires remnant insulin action originating from spared residual β-cells: these mice indeed became hyperglycemic after insulin receptor blockade. Accordingly, Gcgr(-/-) mice developed hyperglycemia after induction of a more complete, diphtheria toxin (DT)-induced β-cell loss, a situation of near-absolute insulin deficiency similar to type 1 diabetes. In addition, glucagon deficiency did not impair the natural capacity of α-cells to reprogram into insulin production after extreme β-cell loss. α-to-β-cell conversion was improved in Gcgr(-/-) mice as a consequence of α-cell hyperplasia. Collectively, these results indicate that glucagon antagonism could i) be a useful adjuvant therapy in diabetes only when residual insulin action persists, and ii) help devising future β-cell regeneration therapies relying upon α-cell reprogramming
Structure-Based Design of Active-Site-Directed, Highly Potent, Selective, and Orally Bioavailable Low-Molecular-Weight Protein Tyrosine Phosphatase Inhibitors
Protein tyrosine phosphatases constitute an important class of drug targets whose potential has been limited by the paucity of drug-like small-molecule inhibitors. We recently described a class of active-site-directed, moderately selective, and potent inhibitors of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP). Here, we report our extensive structure-based design and optimization effort that afforded inhibitors with vastly improved potency and specificity. The leading compound inhibits LMW-PTP potently and selectively (Ki = 1.2 nM, >8000-fold selectivity). Many compounds exhibit favorable drug-like properties, such as low molecular weight, weak cytochrome P450 inhibition, high metabolic stability, moderate to high cell permeability (Papp > 0.2 nm/s), and moderate to good oral bioavailability (% F from 23 to 50% in mice), and therefore can be used as in vivo chemical probes to further dissect the complex biological as well as pathophysiological roles of LMW-PTP and for the development of therapeutics targeting LMW-PTP
LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept
Objective: A novel dual GIP and GLP-1 receptor agonist, LY3298176, was developed to determine whether the metabolic action of GIP adds to the established clinical benefits of selective GLP-1 receptor agonists in type 2 diabetes mellitus (T2DM). Methods: LY3298176 is a fatty acid modified peptide with dual GIP and GLP-1 receptor agonist activity designed for once-weekly subcutaneous administration. LY3298176 was characterised in vitro, using signaling and functional assays in cell lines expressing recombinant or endogenous incretin receptors, and in vivo using body weight, food intake, insulin secretion and glycemic profiles in mice.A Phase 1, randomised, placebo-controlled, double-blind study was comprised of three parts: a single-ascending dose (SAD; doses 0.25–8 mg) and 4-week multiple-ascending dose (MAD; doses 0.5–10 mg) studies in healthy subjects (HS), followed by a 4-week multiple-dose Phase 1 b proof-of-concept (POC; doses 0.5–15 mg) in patients with T2DM (ClinicalTrials.gov no. NCT02759107). Doses higher than 5 mg were attained by titration, dulaglutide (DU) was used as a positive control. The primary objective was to investigate safety and tolerability of LY3298176. Results: LY3298176 activated both GIP and GLP-1 receptor signaling in vitro and showed glucose-dependent insulin secretion and improved glucose tolerance by acting on both GIP and GLP-1 receptors in mice. With chronic administration to mice, LY3298176 potently decreased body weight and food intake; these effects were significantly greater than the effects of a GLP-1 receptor agonist.A total of 142 human subjects received at least 1 dose of LY3298176, dulaglutide, or placebo. The PK profile of LY3298176 was investigated over a wide dose range (0.25–15 mg) and supports once-weekly administration. In the Phase 1 b trial of diabetic subjects, LY3298176 doses of 10 mg and 15 mg significantly reduced fasting serum glucose compared to placebo (least square mean [LSM] difference [95% CI]: −49.12 mg/dL [−78.14, −20.12] and −43.15 mg/dL [−73.06, −13.21], respectively). Reductions in body weight were significantly greater with the LY3298176 1.5 mg, 4.5 mg and 10 mg doses versus placebo in MAD HS (LSM difference [95% CI]: −1.75 kg [−3.38, −0.12], −5.09 kg [−6.72, −3.46] and −4.61 kg [−6.21, −3.01], respectively) and doses of 10 mg and 15 mg had a relevant effect in T2DM patients (LSM difference [95% CI]: −2.62 kg [−3.79, −1.45] and −2.07 kg [−3.25, −0.88], respectively.The most frequent side effects reported with LY3298176 were gastrointestinal (vomiting, nausea, decreased appetite, diarrhoea, and abdominal distension) in both HS and patients with T2DM; all were dose-dependent and considered mild to moderate in severity. Conclusions: Based on these results, the pharmacology of LY3298176 translates from preclinical to clinical studies. LY3298176 has the potential to deliver clinically meaningful improvement in glycaemic control and body weight. The data warrant further clinical evaluation of LY3298176 for the treatment of T2DM and potentially obesity. Keywords: Glucagon-like peptide-1, Glucose-dependent insulinotropic polypeptide, LY3298176, Obesity, Type 2 diabetes mellitu