19 research outputs found

    Dynamic flow synthesis of porous organic cages

    Get PDF
    The dynamic covalent synthesis of two imine-based porous organic cages was successfully transferred from batch to continuous flow. The same flow reactor was then used to scramble the constituents of these two cages in differing ratios to form cage mixtures. Preparative HPLC purification of one of these mixtures allowed rapid access to a desymmetrised cage molecule.We thank the Engineering and Physical Sciences Research Council (EPSRC) for financial support under the Grants EP/H000925/1 (AIC), EP/K009494/1 (SVL) and EP/M004120/1 (SVL), and Pfizer Worldwide Research & Development (CB). The authors would like to thank EPSRC Dial-a-Molecule Grand Challenge Network (EP/K004840/1) for funding a placement with SVL via the Interdisciplinary Mobility Funding scheme (AGS).This is the author accepted manuscript. The final version is available from RSC via http://dx.doi.org/10.1039/C5CC07447

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Bioelectrical impedance vector analysis in the critically ill: Cool tool or just another 'toy'?

    No full text
    Assessment of volume and hydration status is far from easy and therefore technology such as bioelectrical impedance vector analysis (BIVA) may complement our examination techniques. This study highlights the fact that clinical assessment of volume balance and BIVA may correlate, but whether the routine use of BIVA will avoid significant volume overload in the critically ill remains unknown. Further studies are needed but at the moment appear a little way off

    Acute kidney injury and mild therapeutic hypothermia in patients after cardiopulmonary resuscitation - a post hoc analysis of a prospective observational trial

    No full text
    Abstract Background The aim of this study was to investigate the influence of mild therapeutic hypothermia (MTH) on the incidence of and recovery from acute kidney injury (AKI). Methods Patients who had undergone successful cardiopulmonary resuscitation (CPR) were included. Serum creatinine and cystatin C were measured at baseline, daily up to 5 days and at ICU discharge. AKI was defined by the Kidney Disease Improving Global Outcomes (KDIGO) criteria. MTH was applied for 24 h targeting a temperature of 33 °C. Neurological outcome was assessed with the Cerebral Performance Categories score at hospital discharge. Results 126 patients were included in the study; 73 patients (58%) developed AKI. Patients treated with MTH had a significantly lower incidence of AKI as compared to normothermia (NT) (44 vs. 69%; p = 0.004). Patients with less favourable neurological outcomes had a significantly higher rate of AKI, although when treated with MTH the occurrence of AKI was reduced (50 vs. 80%; p = 0.017). Furthermore, MTH treatment was accompanied by significantly lower creatinine levels on day 0–1 and at ICU discharge (day 0: 1.12 (0.90–1.29) vs. 1.29 (1.00–1.52) mg/dl; p = 0.016) and lower cystatin C levels on day 0–3 and at ICU discharge (day 0: 0.88 (0.77–1.10) vs. 1.29 (1.06–2.16) mg/l; p < 0.001). Conclusions Mild therapeutic hypothermia seems to have a protective effect against the development of AKI and on renal recovery. This may be less pronounced in patients with a favourable neurological outcome

    Hemofiltration induces generation of leukocyte-derived CD31+/CD41− microvesicles in sepsis

    No full text
    Abstract Background Microvesicles (MV) are extracellular vesicles known to be associated with cellular activation and inflammation. Hemofiltration is an effective blood purification technique for patients with renal failure and possibly also eliminates inflammatory mediators in the setting of sepsis. On the other hand, proinflammatory stimuli are induced by blood contacting the artificial membrane during extracorporeal blood purification. In chronic dialysis patients a systemic increase in MV has been described. The aim of the study was to investigate whether hemofilter passage of blood in continuous veno-venous hemofiltration (CVVH) alters MV composition and levels in critically ill patients with sepsis. Methods Pre- and postfilter bloods as well as ultrafiltrate samples from intensive care unit patients with severe sepsis were obtained during CVVH with regional citrate anticoagulation. MV subtypes in blood were analyzed by high-sensitivity flow cytometry. Additionally, tissue factor (TF) levels and MV-associated TF activities as well as MV activities were quantified. All parameters were corrected for hemoconcentration applied during CVVH. Results Twelve patients were analyzed. A significant increase in presumably mostly leukocyte-derived CD31+/CD41− MV (1.32 (1.09–1.93)-fold [median (25th–75th quartiles)], p = 0.021) was observed post- to prefilter, whereas platelet-derived MV as well as AnnexinV-binding MV were unaltered. Increments of AnnexinV+, CD42b+ and CD31+/CD41− MV post- to prefilter correlated with filtration fraction (FF) (all p < 0.05). Significant reductions in MV activity [0.72 (0.62–0.84)-fold, p = 0.002] and TF level [0.95 (0.87–0.99)-fold, p = 0.0093] were detected postfilter compared to prefilter. No MV activity was measurable in ultrafiltrate samples. Conclusions Despite clearing a fraction of small PS-exposing MV CVVH does not eliminate larger MV. Concurrently, CVVH induces the release of CD31+/CD4− MV that indicate leukocyte activation during hemofilter passage in septic patients. Increments of several MV subtypes within the hemofilter correlate with FF, which supports common recommendations to keep FF low. A fraction of TF is being cleared by CVVH via ultrafiltration

    Migration of leukocytes across an endothelium-epithelium bilayer as a model of renal interstitial inflammation

    No full text
    Interstitial inflammation has emerged as a key event in the development of acute renal failure. To gain better insight into the nature of these inflammatory processes, the interplay between tubular epithelial cells, endothelial cells, and neutrophils (PMN) was investigated. A coculture transmigration model was developed, composed of human dermal microvascular endothelial (HDMEC) and human renal proximal tubular cells (HK-2) cultured on opposite sides of Transwell growth supports. Correct formation of an endoepithelial bilayer was verified by light and electron microscopy. The model was used to study the effects of endotoxin (LPS), tumor necrosis factor (TNF)-alpha, and alpha-melanocyte-stimulating hormone (alpha-MSH) by measuring PMN migration and cytokine release. To distinguish between individual roles of microvascular endothelial and epithelial cells in transmigration processes, migration of PMN was investigated separately in HK-2 and HDMEC monolayers. Sequential migration of PMN through endothelium and epithelium could be observed and was significantly increased after proinflammatory stimulation with either TNF-alpha or LPS (3.5 +/- 0.58 and 2.76 +/- 0.64-fold vs. control, respectively). Coincubation with alpha-MSH inhibited the transmigration of PMN through the bilayer after proinflammatory stimulation with LPS but not after TNF-alpha. The bilayers produced significant amounts of IL-8 and IL-6 mostly released from the epithelial cells. Furthermore, alpha-MSH decreased LPS-induced IL-6 secretion by 30% but had no significant effect on IL-8 secretion. We established a transmigration model showing sequential migration of PMN across microvascular endothelial and renal tubular epithelial cells stimulated by TNF-alpha and LPS. Anti-inflammatory effects of alpha-MSH in this bilayer model are demonstrated by inhibition on PMN transmigration and IL-6 secretion

    Migration of leukocytes across an endothelium-epithelium bilayer as a model of renal interstitial inflammation

    No full text
    Interstitial inflammation has emerged as a key event in the development of acute renal failure. To gain better insight into the nature of these inflammatory processes, the interplay between tubular epithelial cells, endothelial cells, and neutrophils (PMN) was investigated. A coculture transmigration model was developed, composed of human dermal microvascular endothelial (HDMEC) and human renal proximal tubular cells (HK-2) cultured on opposite sides of Transwell growth supports. Correct formation of an endoepithelial bilayer was verified by light and electron microscopy. The model was used to study the effects of endotoxin (LPS), tumor necrosis factor (TNF)-alpha, and alpha-melanocyte-stimulating hormone (alpha-MSH) by measuring PMN migration and cytokine release. To distinguish between individual roles of microvascular endothelial and epithelial cells in transmigration processes, migration of PMN was investigated separately in HK-2 and HDMEC monolayers. Sequential migration of PMN through endothelium and epithelium could be observed and was significantly increased after proinflammatory stimulation with either TNF-alpha or LPS (3.5 +/- 0.58 and 2.76 +/- 0.64-fold vs. control, respectively). Coincubation with alpha-MSH inhibited the transmigration of PMN through the bilayer after proinflammatory stimulation with LPS but not after TNF-alpha. The bilayers produced significant amounts of IL-8 and IL-6 mostly released from the epithelial cells. Furthermore, alpha-MSH decreased LPS-induced IL-6 secretion by 30% but had no significant effect on IL-8 secretion. We established a transmigration model showing sequential migration of PMN across microvascular endothelial and renal tubular epithelial cells stimulated by TNF-alpha and LPS. Anti-inflammatory effects of alpha-MSH in this bilayer model are demonstrated by inhibition on PMN transmigration and IL-6 secretion
    corecore