5 research outputs found

    A Localized Surface Plasmon Resonance Imaging Instrument for Multiplexed Biosensing

    No full text
    Localized surface plasmon resonance (LSPR) spectroscopy has been widely used for label-free, highly sensitive measurements of interactions at a surface. LSPR imaging (LSPRi) has the full advantages of LSPR but enables high-throughput, multiplexed measurements by simultaneously probing multiple individually addressable sensors on a single sample surface. Each spatially distinct sensor can be tailored to provide data regarding different surface functionalities or reaction environments. Previously, LSPRi has focused on single-particle sensing where the size scale is very small. Here, we create defined macroscale arrays of nanoparticles that are compatible with common patterning methods such as dip-pen nanolithography and multichannel microfluidic delivery devices. With this new LSPR sensing format, we report the first demonstration of multiplexed LSPR imaging and show that the increased throughput of our instrument enables the collection of a complete Langmuir binding curve on a single sensor surface. In addition, the multiplexed LSPR sensor is highly selective, as demonstrated by the hybridization of single-stranded DNA to complementary sequences immobilized on the sensor surface. The LSPR arrays described in this work exhibit uniform sensitivity and tailorable optical properties, making them an ideal platform for high-throughput, label-free analysis of a variety of molecular binding interactions

    Quantitative Surface Plasmon Resonance Imaging: A Simple Approach to Automated Angle Scanning

    No full text
    Here we present an automated angle-scanning surface plasmon resonance imaging (SPRi) instrument which provides multiplexed, quantitative reflectance data over a wide angular range. Angle-dependent artifacts, which arise from the simple optical setup, are corrected using software. This enables monitoring of significantly different surface coatings in many solvents, which would be outside the dynamic range of typical fixed-angle instruments. Operation in the visible to near-infrared range without the need for reconfiguration extends the instrument capabilities to increase sensitivity or to investigate the optical properties of surface films. This instrument provides maximum flexibility to study a wide range of systems with full exploitation of the quantitative capabilities of SPRi achieved by fitting data to the Fresnel model
    corecore